Parameterization of single-scattering properties of snow

Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relat...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 9; no. 3; pp. 1277 - 1301
Main Authors Räisänen, P, Kokhanovsky, A, Guyot, G, Jourdan, O, Nousiainen, T
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 23.06.2015
Copernicus
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199–2.7 μm and rvp = 10–2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.
ISSN:1994-0424
1994-0416
1994-0424
1994-0416
DOI:10.5194/tc-9-1277-2015