Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits ob...

Full description

Saved in:
Bibliographic Details
Published inNature ecology & evolution Vol. 6; no. 1; pp. 36 - 50
Main Authors Joswig, Julia S., Wirth, Christian, Schuman, Meredith C., Kattge, Jens, Reu, Björn, Wright, Ian J., Sippel, Sebastian D., Rüger, Nadja, Richter, Ronny, Schaepman, Michael E., van Bodegom, Peter M., Cornelissen, J. H. C., Díaz, Sandra, Hattingh, Wesley N., Kramer, Koen, Lens, Frederic, Niinemets, Ülo, Reich, Peter B., Reichstein, Markus, Römermann, Christine, Schrodt, Franziska, Anand, Madhur, Bahn, Michael, Byun, Chaeho, Campetella, Giandiego, Cerabolini, Bruno E. L., Craine, Joseph M., Gonzalez-Melo, Andres, Gutiérrez, Alvaro G., He, Tianhua, Higuchi, Pedro, Jactel, Hervé, Kraft, Nathan J. B., Minden, Vanessa, Onipchenko, Vladimir, Peñuelas, Josep, Pillar, Valério D., Sosinski, Ênio, Soudzilovskaia, Nadejda A., Weiher, Evan, Mahecha, Miguel D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2022
Nature Publishing Group
Nature
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles. The authors investigate the broad-scale climatological and soil properties that co-vary with major axes of plant functional traits. They find that variation in plant size is attributed to latitudinal gradients in water or energy limitation, while variation in leaf economics traits is attributed to both climate and soil fertility including their interaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2397-334X
2397-334X
DOI:10.1038/s41559-021-01616-8