Biomechanical consequences of the intervertebral disc centre of rotation kinematics during lateral bending and axial rotation

The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 3172 - 13
Main Authors Allais, Roman, Capart, Antoine, Da Silva, Anabela, Boiron, Olivier
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
AbstractList The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11[Formula: see text] wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11[Formula: see text] wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11[Formula: see text] wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 $$^\circ$$ ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 $$^\circ$$ ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
Abstract The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11 $$^\circ$$ ∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently, many studies have been conducted to measure or estimate the ICR during rotations in the three anatomical planes; however the results reported are widely scattered. Even if some inter-subjects variability is to be expected, such inconsistencies are likely explained by the differences in methods and experiments. Therefore, in this paper we seek to model three behaviours of the ICR during lateral bending and axial rotation based on results published in the literature. In order to assess the metabolic and mechanical sensibility to the assumption made on the ICR kinematics, we used a previously validated three dimensional non-linear poroelastic model of a porcine intervertebral disc to simulate physiological lateral and axial rotations. The impact of the geometry was also briefly investigated by considering a 11∘ wedge angle. From our simulations, it appears that the hypothesis made on the ICR location does not significantly affect the critical nutrients concentrations but gives disparate predictions of the intradiscal pressure at the centre of the disc (variation up to 0.7 MPa) and of the displacement fields (variation up to 0.4 mm). On the contrary, the wedge angle does not influence the estimated intradiscal pressure but leads to minimal oxygen concentration decreased up to 33% and increased maximal lactate concentration up to 13%. While we can not settle on which definition of the ICR is more accurate, this work suggests that patient-specific modeling of the ICR is required and brings new insights that can be useful for the development of new tools or the design of surgical material such as total lumbar disc prostheses.
ArticleNumber 3172
Author Capart, Antoine
Allais, Roman
Da Silva, Anabela
Boiron, Olivier
Author_xml – sequence: 1
  givenname: Roman
  surname: Allais
  fullname: Allais, Roman
  email: roman.allais@centrale-marseille.fr
  organization: CNRS, Centrale Marseille, IRPHE, Aix Marseille Univ
– sequence: 2
  givenname: Antoine
  surname: Capart
  fullname: Capart, Antoine
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel
– sequence: 3
  givenname: Anabela
  surname: Da Silva
  fullname: Da Silva, Anabela
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel
– sequence: 4
  givenname: Olivier
  surname: Boiron
  fullname: Boiron, Olivier
  organization: CNRS, Centrale Marseille, IRPHE, Aix Marseille Univ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36823433$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04041276$$DView record in HAL
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxAUOAX8mzgWpVEArrcQFzpY9mex6ydqLnV3Bgf-O03Sh3UN98Xj83pvx-D0vTnzwWBQvKXlHCVfvk6CyVRVhvGKtlLRqnhRnjAhZMc7Yyb34tLhIaU3ykqwVtH1WnPJaMS44Pyv-fHRhg7Ay3oEZSgg-4c8desBUhr4cV1g6P2LcYxzRxgzpXIIS0I8RJ0QMoxld8OUP53GTQ0hlt4vOL8vBZGJmWPTddDa-K80vlzMH0oviaW-GhBd3-3nx_fOnb1fX1eLrl5ury0UFshFjJaBWIFppGgW94g1SAErQNDUoIbBWxNqGy6brbS3BQodAsLOq5sBULSg_L25m3S6Ytd5GtzHxtw7G6dtEiEttYm59QC2kaYkByxmCMJRYsC00fSctoTbXzlofZq3tzm6wu52EGR6IPrzxbqWXYa_bVhKiVBZ4OwusjmjXlws95YgggrKm3k-Nv7krFkP-ljTqTR4_DoPxGHZJs0YRUnPVsgx9fQRdh130eawZ1bSspYyTjHp1v_t_9Q-OyAA1AyCGlCL2Gtz8WfkxbtCU6Ml_evafzv7Tt_7T02TYEfWg_iiJz6S0nUyD8X_bj7D-AmP87zc
CitedBy_id crossref_primary_10_1016_j_cmpb_2024_108172
Cites_doi 10.1097/01.brs.0000154619.38122.47
10.1097/00007632-198809000-00011
10.1152/ajpheart.00934.2004
10.1007/978-3-7091-1535-0_18
10.1148/radiol.2302011842
10.1097/00007632-198504000-00014
10.1097/brs.0b013e31811ec282
10.1097/01.BRS.0000087210.93541.23
10.1097/00024720-200402000-00012
10.1080/10255842.2010.493517
10.1016/s0268-0033(03)00142-6
10.1177/0954411912474742
10.1080/10255842.2010.535815
10.1016/j.jbiomech.2017.10.027
10.1080/10255842.2015.1101072
10.1007/s00586-009-0936-6
10.1016/j.jbiomech.2014.04.002
10.1080/10255842.2017.1382850
10.1093/rheumatology/16.1.22
10.1016/j.jbiomech.2019.04.020
10.1016/j.jbiomech.2007.01.003
10.1007/s00586-008-0822-7
10.1016/j.jbiomech.2013.10.014
10.1080/00140139.2016.1265670
10.1016/S0268-0033(00)00103-0
10.1097/00007632-199904150-00005
10.1016/j.jbiomech.2008.02.002
10.1097/01.brs.0000259059.90430.c2
10.1007/s00586-005-0935-1
10.1007/s00586-011-1822-6
10.1016/0021-9290(78)90006-4
10.1016/j.jbiomech.2006.01.007
10.1115/1.1835361
10.1097/00007632-200112010-00014
10.1097/00007632-198607000-00010
10.3109/03008208109152130
10.1080/10255842.2013.815948
10.1097/BRS.0b013e3181b723c9
10.1115/1.2073674
10.1186/1471-2474-11-151
10.1016/j.jbiomech.2009.01.017
10.1016/0304-4165(81)90476-1
10.1016/j.clinbiomech.2007.10.001
10.1097/00007632-198409000-00006
10.1097/BRS.0000000000001789
10.1007/s005860100346
10.1016/j.compbiomed.2013.06.011
10.1097/00007632-198409000-00008
10.1016/j.jmbbm.2011.04.008
10.1097/00007632-199801010-00001
10.1007/s10237-018-1064-1
10.1007/s00586-004-0710-8
10.1002/jsp2.1179
10.1097/00007632-200204150-00005
10.1080/10255842.2016.1193596
10.1016/0021-9290(71)90025-X
10.1016/0021-9290(95)00037-2
10.3109/ort.1966.37.suppl-90.01
10.1115/1.3138202
10.1016/j.jbiomech.2006.03.016
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-023-29551-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Sciences
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_45a90acb32ec4a10bcb9c7fd5b01b837
PMC9950088
oai_HAL_hal_04041276v1
36823433
10_1038_s41598_023_29551_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Emplois Jeunes Doctorants 2021 - Région Provence-Alpes-Côte-d'Azur
  grantid: 2021_04412
– fundername: ;
  grantid: 2021_04412
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c574t-4c68c495a78cf837e1cc10ea76c844e680bb7357dfb65cbcdec0edb863c286413
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:03:12 EDT 2025
Thu Aug 21 18:38:07 EDT 2025
Fri May 16 00:19:11 EDT 2025
Mon Jul 21 11:39:09 EDT 2025
Wed Aug 13 11:13:16 EDT 2025
Thu Jan 02 22:53:29 EST 2025
Tue Jul 01 04:24:12 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite element method
Intervertebral disc
Instantaneous centre of rotation
Language English
License 2023. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-4c68c495a78cf837e1cc10ea76c844e680bb7357dfb65cbcdec0edb863c286413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9298-5390
0000-0002-0275-0134
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-29551-7
PMID 36823433
PQID 2779291230
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_45a90acb32ec4a10bcb9c7fd5b01b837
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9950088
hal_primary_oai_HAL_hal_04041276v1
proquest_miscellaneous_2780063892
proquest_journals_2779291230
pubmed_primary_36823433
crossref_citationtrail_10_1038_s41598_023_29551_7
crossref_primary_10_1038_s41598_023_29551_7
springer_journals_10_1038_s41598_023_29551_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-23
PublicationDateYYYYMMDD 2023-02-23
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR17) 2009; 18
Smit (CR44) 2002; 11
Adams, Eyre, Muir (CR42) 1977; 16
Schmidt (CR48) 2007; 32
Wilke, Wolf, Claes, Arand, Wiesend (CR52) 1996; 29
Shalash, Ahrens, Bardonova, Byvaltsev, Giers (CR33) 2021; 4
Seligman, Gertzbein, Tile, Kapasouri (CR1) 1984; 9
Schmidt, Heuer, Claes, Wilke (CR9) 2008; 23
Kimura, Steinbach, Watenpaugh, Hargens (CR29) 2001; 26
Wilke, Geppert, Kienle (CR34) 2011; 20
Senteler, Aiyangar, Weisse, Farshad, Snedeker (CR12) 2018; 70
Berry (CR18) 2019; 89
Wang, Tsai, Wang (CR37) 2007; 32
Galbusera (CR45) 2011; 4
Castro, Wilson, Huyghe, Ito, Alves (CR46) 2014; 47
Choi, Shin, Kim (CR63) 2017; 42
Omlor (CR43) 2009; 34
Huang, Gu (CR62) 2008; 41
CR7
Ayturk, Puttlitz (CR19) 2011; 14
Holm, Maroudas, Urban, Selstam, Nachemson (CR57) 1981; 8
Park, Kim, Kim (CR50) 2013; 43
Rousseau, Bradford, Hadi, Pedersen, Lotz (CR8) 2006; 15
Ghiss, Giannesini, Tropiano, Tourki, Boiron (CR23) 2016; 19
Soukane, Shirazi-Adl, Urban (CR31) 2005
Heuer, Schmidt, Claes, Wilke (CR49) 2007; 40
Bibby, Jones, Ripley, Urban (CR27) 2005; 30
Xu, Yang, Lieberman, Haddas (CR20) 2017; 20
Han, Kim, Park, Lim, Kim (CR11) 2013; 227
Mokhbi Soukane, Shirazi-Adl, Urban (CR55) 2009; 18
Mow, Kuei, Lai, Armstrong (CR24) 1980; 102
Soukane, Shirazi-Adl, Urban (CR59) 2007; 40
Kettler (CR64) 2004; 13
Cheung, Zhang, Chow (CR47) 2003; 18
Bartels, Fairbank, Winlove, Urban (CR56) 1998; 23
Pearcy, Tibrewal (CR16) 1984; 9
Gertzbein (CR2) 1985; 10
Dreischarf (CR54) 2014; 47
Pearcy, Bogduk (CR4) 1988; 13
Rohlmann, Zander, Rao, Bergmann (CR14) 2009; 42
Dimnet, Fischer, Gonon, Carret (CR5) 1978; 11
Etienne (CR60) 2013
Etienne, Deplano, Boiron, Tropiano (CR15) 2013; 16
Holm, Holm, Ekström, Karladani, Hansson (CR40) 2004; 17
Chanchairujira (CR36) 2004; 230
Lyons, Eisenstein, Sweet (CR39) 1981; 673
Rolander (CR6) 1966; 37
Kääpä (CR41) 1994; 7
Heuer, Schmidt, Klezl, Claes, Wilke (CR13) 2007; 40
Cossette, Farfan, Robertson, Wells (CR10) 1971; 4
Kuo (CR61) 2010; 11
CR28
Wilson, Van Donkelaar, Huyghe (CR25) 2005; 127
Patel, Kepler, Schaer, Anderson (CR35) 2014
Sélard, Shirazi-Adl, Urban (CR58) 2003; 28
Holzapfel, Sommer, Gasser, Regitnig (CR26) 2005; 289
Ogston (CR3) 1986; 11
Chetoui, Boiron, Dogui, Deplano (CR21) 2017; 20
McLain, Yerby, Moseley (CR38) 2002; 27
De Carvalho, Grondin, Callaghan (CR30) 2017; 60
Wilke, Neef, Hinz, Seidel, Claes (CR51) 2001; 16
Jackson, Huang, Gu (CR32) 2011; 14
Chetoui, Boiron, Ghiss, Dogui, Deplano (CR22) 2019; 18
Wilke, Neef, Caimi, Hoogland, Claes (CR53) 1999; 24
J Dimnet (29551_CR5) 1978; 11
WM Park (29551_CR50) 2013; 43
F Galbusera (29551_CR45) 2011; 4
RF McLain (29551_CR38) 2002; 27
K Chanchairujira (29551_CR36) 2004; 230
D Mokhbi Soukane (29551_CR55) 2009; 18
AR Jackson (29551_CR32) 2011; 14
TH Smit (29551_CR44) 2002; 11
K-S Han (29551_CR11) 2013; 227
GW Omlor (29551_CR43) 2009; 34
S Gertzbein (29551_CR2) 1985; 10
A Rohlmann (29551_CR14) 2009; 42
H-J Wilke (29551_CR53) 1999; 24
G Lyons (29551_CR39) 1981; 673
P Adams (29551_CR42) 1977; 16
E Kääpä (29551_CR41) 1994; 7
VC Mow (29551_CR24) 1980; 102
J Cossette (29551_CR10) 1971; 4
É Sélard (29551_CR58) 2003; 28
M Etienne (29551_CR60) 2013
C-S Kuo (29551_CR61) 2010; 11
F Heuer (29551_CR49) 2007; 40
A Kettler (29551_CR64) 2004; 13
29551_CR7
M Etienne (29551_CR15) 2013; 16
N Ogston (29551_CR3) 1986; 11
M Ghiss (29551_CR23) 2016; 19
S Holm (29551_CR40) 2004; 17
M Pearcy (29551_CR16) 1984; 9
SD Rolander (29551_CR6) 1966; 37
J-L Wang (29551_CR37) 2007; 32
DB Berry (29551_CR18) 2019; 89
F Heuer (29551_CR13) 2007; 40
SR Bibby (29551_CR27) 2005; 30
GA Holzapfel (29551_CR26) 2005; 289
H Schmidt (29551_CR9) 2008; 23
MA Chetoui (29551_CR22) 2019; 18
DM Soukane (29551_CR31) 2005
H-J Wilke (29551_CR34) 2011; 20
UM Ayturk (29551_CR19) 2011; 14
W Wilson (29551_CR25) 2005; 127
S Holm (29551_CR57) 1981; 8
M Chetoui (29551_CR21) 2017; 20
C-Y Huang (29551_CR62) 2008; 41
W Shalash (29551_CR33) 2021; 4
H Schmidt (29551_CR48) 2007; 32
M Dreischarf (29551_CR54) 2014; 47
M Pearcy (29551_CR4) 1988; 13
H-J Wilke (29551_CR52) 1996; 29
D De Carvalho (29551_CR30) 2017; 60
EM Bartels (29551_CR56) 1998; 23
DM Soukane (29551_CR59) 2007; 40
S Kimura (29551_CR29) 2001; 26
M Senteler (29551_CR12) 2018; 70
J Choi (29551_CR63) 2017; 42
G Li (29551_CR17) 2009; 18
M Xu (29551_CR20) 2017; 20
A Castro (29551_CR46) 2014; 47
H-J Wilke (29551_CR51) 2001; 16
JT-M Cheung (29551_CR47) 2003; 18
MA Rousseau (29551_CR8) 2006; 15
J Seligman (29551_CR1) 1984; 9
SA Patel (29551_CR35) 2014
29551_CR28
References_xml – volume: 30
  start-page: 487
  year: 2005
  end-page: 496
  ident: CR27
  article-title: Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells
  publication-title: Spine
  doi: 10.1097/01.brs.0000154619.38122.47
– volume: 13
  start-page: 1033
  year: 1988
  end-page: 1041
  ident: CR4
  article-title: Instantaneous axes of rotation of the lumbar intervertebral joints
  publication-title: Spine
  doi: 10.1097/00007632-198809000-00011
– volume: 289
  start-page: H2048
  year: 2005
  end-page: H2058
  ident: CR26
  article-title: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00934.2004
– year: 2014
  ident: CR35
  article-title: Large animal models of disc degeneration
  publication-title: Intervertebral Disc.
  doi: 10.1007/978-3-7091-1535-0_18
– volume: 230
  start-page: 499
  year: 2004
  end-page: 503
  ident: CR36
  article-title: Intervertebral disk calcification of the spine in an elderly population: Radiographic prevalence, location, and distribution and correlation with spinal degeneration
  publication-title: Radiology
  doi: 10.1148/radiol.2302011842
– volume: 10
  start-page: 257
  issue: 3
  year: 1985
  end-page: 61
  ident: CR2
  article-title: Centrode patterns and segmental instability in degenerative disc disease
  publication-title: Spine
  doi: 10.1097/00007632-198504000-00014
– year: 2013
  ident: CR60
  publication-title: Modelisation du Disque Intervertebral. Theses
– volume: 32
  start-page: 1809
  year: 2007
  end-page: 1815
  ident: CR37
  article-title: The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: A comparative study using aged human and adolescent porcine discs
  publication-title: Spine
  doi: 10.1097/brs.0b013e31811ec282
– volume: 28
  start-page: 1945
  year: 2003
  end-page: 1953
  ident: CR58
  article-title: Finite element study of nutrient diffusion in the human intervertebral disc
  publication-title: Spine
  doi: 10.1097/01.BRS.0000087210.93541.23
– volume: 17
  start-page: 64
  year: 2004
  end-page: 71
  ident: CR40
  article-title: Experimental disc degeneration due to endplate injury
  publication-title: Clin. Spine Surg.
  doi: 10.1097/00024720-200402000-00012
– volume: 14
  start-page: 695
  year: 2011
  end-page: 705
  ident: CR19
  article-title: Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.493517
– volume: 18
  start-page: 790
  year: 2003
  end-page: 799
  ident: CR47
  article-title: Biomechanical responses of the intervertebral joints to static and vibrational loading: A finite element study
  publication-title: Clin. Biomech.
  doi: 10.1016/s0268-0033(03)00142-6
– volume: 227
  start-page: 543
  year: 2013
  end-page: 550
  ident: CR11
  article-title: Effect of centers of rotation on spinal loads and muscle forces in total disk replacement of lumbar spine
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411912474742
– volume: 14
  start-page: 195
  year: 2011
  end-page: 204
  ident: CR32
  article-title: Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: A 3D finite element study
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.535815
– volume: 70
  start-page: 140
  year: 2018
  end-page: 148
  ident: CR12
  article-title: Sensitivity of intervertebral joint forces to center of rotation location and trends along its migration path
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.027
– volume: 19
  start-page: 1079
  year: 2016
  end-page: 1088
  ident: CR23
  article-title: Quantitative MRI water content mapping of porcine intervertebral disc during uniaxial compression
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1101072
– volume: 18
  start-page: 1013
  year: 2009
  end-page: 1021
  ident: CR17
  article-title: Segmental in vivo vertebral motion during functional human lumbar spine activities
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-009-0936-6
– volume: 47
  start-page: 1757
  year: 2014
  end-page: 1766
  ident: CR54
  article-title: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.002
– volume: 20
  start-page: S39
  year: 2017
  end-page: S40
  ident: CR21
  article-title: Prediction of intervertebral disc mechanical response to axial load using isotropic and fiber reinforced Fe models
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2017.1382850
– volume: 16
  start-page: 22
  year: 1977
  end-page: 29
  ident: CR42
  article-title: Biochemical aspects of development and ageing of human lumbar intervertebral discs
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/16.1.22
– volume: 89
  start-page: 95
  year: 2019
  end-page: 104
  ident: CR18
  article-title: Lumbar spine angles and intervertebral disc characteristics with end-range positions in three planes of motion in healthy people using upright mri
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.04.020
– volume: 40
  start-page: 2645
  year: 2007
  end-page: 2654
  ident: CR59
  article-title: Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.01.003
– volume: 18
  start-page: 254
  year: 2009
  end-page: 262
  ident: CR55
  article-title: Investigation of solute concentrations in a 3D model of intervertebral disc
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-008-0822-7
– volume: 47
  start-page: 297
  year: 2014
  end-page: 301
  ident: CR46
  article-title: Intervertebral disc creep behavior assessment through an open source finite element solver
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.014
– volume: 60
  start-page: 1393
  year: 2017
  end-page: 1404
  ident: CR30
  article-title: The impact of office chair features on lumbar lordosis, intervertebral joint and sacral tilt angles: A radiographic assessment
  publication-title: Ergonomics
  doi: 10.1080/00140139.2016.1265670
– volume: 16
  start-page: S111
  year: 2001
  end-page: S126
  ident: CR51
  article-title: Intradiscal pressure together with anthropometric data—A data set for the validation of models
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(00)00103-0
– volume: 24
  start-page: 755
  year: 1999
  end-page: 762
  ident: CR53
  article-title: New in vivo measurements of pressures in the intervertebral disc in daily life
  publication-title: Spine
  doi: 10.1097/00007632-199904150-00005
– volume: 41
  start-page: 1184
  year: 2008
  end-page: 1196
  ident: CR62
  article-title: Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.02.002
– volume: 32
  start-page: 748
  year: 2007
  end-page: 755
  ident: CR48
  article-title: Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading
  publication-title: Spine
  doi: 10.1097/01.brs.0000259059.90430.c2
– volume: 15
  start-page: 299
  year: 2006
  end-page: 307
  ident: CR8
  article-title: The instant axis of rotation influences facet forces at l5/s1 during flexion/extension and lateral bending
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-005-0935-1
– volume: 20
  start-page: 1859
  year: 2011
  end-page: 1868
  ident: CR34
  article-title: Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-011-1822-6
– volume: 11
  start-page: 143
  year: 1978
  end-page: 150
  ident: CR5
  article-title: Radiographic studies of lateral flexion in the lumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(78)90006-4
– volume: 40
  start-page: 271
  year: 2007
  end-page: 280
  ident: CR13
  article-title: Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.01.007
– volume: 127
  start-page: 158
  year: 2005
  end-page: 165
  ident: CR25
  article-title: A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1835361
– volume: 26
  start-page: 2596
  year: 2001
  end-page: 2600
  ident: CR29
  article-title: Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging
  publication-title: Spine
  doi: 10.1097/00007632-200112010-00014
– volume: 11
  start-page: 591
  year: 1986
  end-page: 595
  ident: CR3
  article-title: Centrode patterns in the lumbar spine, baseline studies in normal subjects
  publication-title: Spine
  doi: 10.1097/00007632-198607000-00010
– volume: 8
  start-page: 101
  year: 1981
  end-page: 119
  ident: CR57
  article-title: Nutrition of the intervertebral disc: Solute transport and metabolism
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008208109152130
– volume: 16
  start-page: 236
  year: 2013
  end-page: 238
  ident: CR15
  article-title: 3D dynamic numerical simulations of intervertebral disc: Bending and twisting
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.815948
– volume: 34
  start-page: 2730
  year: 2009
  end-page: 2739
  ident: CR43
  article-title: A new porcine in vivo animal model of disc degeneration: Response of anulus fibrosus cells, chondrocyte-like nucleus pulposus cells, and notochordal nucleus pulposus cells to partial nucleotomy
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181b723c9
– year: 2005
  ident: CR31
  article-title: Analysis of nonlinear coupled diffusion of oxygen and lactic acid in intervertebral discs
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2073674
– volume: 11
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR61
  article-title: Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure—A finite element study
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-11-151
– volume: 42
  start-page: 884
  year: 2009
  end-page: 890
  ident: CR14
  article-title: Realistic loading conditions for upper body bending
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.01.017
– volume: 673
  start-page: 443
  year: 1981
  end-page: 453
  ident: CR39
  article-title: Biochemical changes in intervertebral disc degeneration
  publication-title: Biochim. Biophys. Acta (BBA) Gen. Subj.
  doi: 10.1016/0304-4165(81)90476-1
– volume: 23
  start-page: 270
  year: 2008
  end-page: 278
  ident: CR9
  article-title: The relation between the instantaneous center of rotation and facet joint forces—A finite element analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.10.001
– volume: 9
  start-page: 566
  year: 1984
  end-page: 573
  ident: CR1
  article-title: Computer analysis of spinal segment motion in degenerative disc disease with and without axial loading
  publication-title: Spine
  doi: 10.1097/00007632-198409000-00006
– volume: 42
  start-page: E332
  year: 2017
  end-page: E339
  ident: CR63
  article-title: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: A finite element study
  publication-title: Spine
  doi: 10.1097/BRS.0000000000001789
– volume: 11
  start-page: 137
  year: 2002
  end-page: 144
  ident: CR44
  article-title: The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations
  publication-title: Eur. Spine J.
  doi: 10.1007/s005860100346
– volume: 43
  start-page: 1234
  year: 2013
  end-page: 1240
  ident: CR50
  article-title: Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.06.011
– volume: 9
  start-page: 582
  year: 1984
  end-page: 587
  ident: CR16
  article-title: Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography
  publication-title: Spine
  doi: 10.1097/00007632-198409000-00008
– volume: 4
  start-page: 1234
  year: 2011
  end-page: 1241
  ident: CR45
  article-title: Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.04.008
– volume: 23
  start-page: 1
  year: 1998
  end-page: 7
  ident: CR56
  article-title: Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain
  publication-title: Spine
  doi: 10.1097/00007632-199801010-00001
– volume: 18
  start-page: 17
  year: 2019
  end-page: 28
  ident: CR22
  article-title: Assessment of intervertebral disc degeneration-related properties using finite element models based on rho-h -weighted MRI data
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1064-1
– volume: 13
  start-page: 553
  year: 2004
  end-page: 559
  ident: CR64
  article-title: Finite helical axes of motion are a useful tool to describe the three-dimensional in vitro kinematics of the intact, injured and stabilised spine
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-004-0710-8
– volume: 4
  start-page: e1179
  year: 2021
  ident: CR33
  article-title: Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertebral discs
  publication-title: JOR Spine
  doi: 10.1002/jsp2.1179
– volume: 27
  start-page: E200
  year: 2002
  end-page: E206
  ident: CR38
  article-title: Comparative morphometry of l4 vertebrae: Comparison of large animal models for the human lumbar spine
  publication-title: Spine
  doi: 10.1097/00007632-200204150-00005
– volume: 20
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR20
  article-title: Lumbar spine finite element model for healthy subjects: Development and validation
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1193596
– ident: CR7
– volume: 4
  start-page: 149
  year: 1971
  end-page: 153
  ident: CR10
  article-title: The instantaneous center of rotation of the third lumbar intervertebral joint
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(71)90025-X
– volume: 29
  start-page: 549
  year: 1996
  end-page: 555
  ident: CR52
  article-title: Influence of varying muscle forces on lumbar intradiscal pressure: An in vitro study
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00037-2
– ident: CR28
– volume: 37
  start-page: 1
  year: 1966
  end-page: 144
  ident: CR6
  article-title: Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion: an experimental study on autopsy specimens
  publication-title: Acta Orthopaed. Scand.
  doi: 10.3109/ort.1966.37.suppl-90.01
– volume: 7
  start-page: 296
  year: 1994
  end-page: 306
  ident: CR41
  article-title: Proteoglycan chemistry in experimentally injured porcine intervertebral disk
  publication-title: J. Spinal Disord.
– volume: 102
  start-page: 73
  year: 1980
  end-page: 84
  ident: CR24
  article-title: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138202
– volume: 40
  start-page: 795
  year: 2007
  end-page: 803
  ident: CR49
  article-title: Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.03.016
– volume: 20
  start-page: S39
  year: 2017
  ident: 29551_CR21
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2017.1382850
– year: 2014
  ident: 29551_CR35
  publication-title: Intervertebral Disc.
  doi: 10.1007/978-3-7091-1535-0_18
– volume: 673
  start-page: 443
  year: 1981
  ident: 29551_CR39
  publication-title: Biochim. Biophys. Acta (BBA) Gen. Subj.
  doi: 10.1016/0304-4165(81)90476-1
– volume: 89
  start-page: 95
  year: 2019
  ident: 29551_CR18
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.04.020
– volume: 37
  start-page: 1
  year: 1966
  ident: 29551_CR6
  publication-title: Acta Orthopaed. Scand.
  doi: 10.3109/ort.1966.37.suppl-90.01
– volume: 10
  start-page: 257
  issue: 3
  year: 1985
  ident: 29551_CR2
  publication-title: Spine
  doi: 10.1097/00007632-198504000-00014
– volume: 11
  start-page: 143
  year: 1978
  ident: 29551_CR5
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(78)90006-4
– volume: 18
  start-page: 254
  year: 2009
  ident: 29551_CR55
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-008-0822-7
– volume: 23
  start-page: 1
  year: 1998
  ident: 29551_CR56
  publication-title: Spine
  doi: 10.1097/00007632-199801010-00001
– volume: 11
  start-page: 591
  year: 1986
  ident: 29551_CR3
  publication-title: Spine
  doi: 10.1097/00007632-198607000-00010
– volume: 102
  start-page: 73
  year: 1980
  ident: 29551_CR24
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138202
– volume: 14
  start-page: 195
  year: 2011
  ident: 29551_CR32
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.535815
– volume: 40
  start-page: 271
  year: 2007
  ident: 29551_CR13
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.01.007
– volume: 34
  start-page: 2730
  year: 2009
  ident: 29551_CR43
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181b723c9
– volume: 18
  start-page: 790
  year: 2003
  ident: 29551_CR47
  publication-title: Clin. Biomech.
  doi: 10.1016/s0268-0033(03)00142-6
– volume: 14
  start-page: 695
  year: 2011
  ident: 29551_CR19
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2010.493517
– volume: 26
  start-page: 2596
  year: 2001
  ident: 29551_CR29
  publication-title: Spine
  doi: 10.1097/00007632-200112010-00014
– volume: 40
  start-page: 795
  year: 2007
  ident: 29551_CR49
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.03.016
– year: 2005
  ident: 29551_CR31
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2073674
– volume: 18
  start-page: 17
  year: 2019
  ident: 29551_CR22
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1064-1
– volume: 4
  start-page: 149
  year: 1971
  ident: 29551_CR10
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(71)90025-X
– volume: 16
  start-page: 236
  year: 2013
  ident: 29551_CR15
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2013.815948
– volume: 17
  start-page: 64
  year: 2004
  ident: 29551_CR40
  publication-title: Clin. Spine Surg.
  doi: 10.1097/00024720-200402000-00012
– volume: 16
  start-page: 22
  year: 1977
  ident: 29551_CR42
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/16.1.22
– volume: 27
  start-page: E200
  year: 2002
  ident: 29551_CR38
  publication-title: Spine
  doi: 10.1097/00007632-200204150-00005
– volume: 20
  start-page: 1859
  year: 2011
  ident: 29551_CR34
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-011-1822-6
– volume: 227
  start-page: 543
  year: 2013
  ident: 29551_CR11
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411912474742
– volume: 4
  start-page: 1234
  year: 2011
  ident: 29551_CR45
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.04.008
– volume: 29
  start-page: 549
  year: 1996
  ident: 29551_CR52
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00037-2
– volume: 43
  start-page: 1234
  year: 2013
  ident: 29551_CR50
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.06.011
– volume: 28
  start-page: 1945
  year: 2003
  ident: 29551_CR58
  publication-title: Spine
  doi: 10.1097/01.BRS.0000087210.93541.23
– volume: 4
  start-page: e1179
  year: 2021
  ident: 29551_CR33
  publication-title: JOR Spine
  doi: 10.1002/jsp2.1179
– volume: 9
  start-page: 582
  year: 1984
  ident: 29551_CR16
  publication-title: Spine
  doi: 10.1097/00007632-198409000-00008
– volume: 13
  start-page: 1033
  year: 1988
  ident: 29551_CR4
  publication-title: Spine
  doi: 10.1097/00007632-198809000-00011
– ident: 29551_CR7
– volume: 70
  start-page: 140
  year: 2018
  ident: 29551_CR12
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.10.027
– volume: 23
  start-page: 270
  year: 2008
  ident: 29551_CR9
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2007.10.001
– volume: 7
  start-page: 296
  year: 1994
  ident: 29551_CR41
  publication-title: J. Spinal Disord.
– ident: 29551_CR28
– volume: 11
  start-page: 1
  year: 2010
  ident: 29551_CR61
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-11-151
– volume: 20
  start-page: 1
  year: 2017
  ident: 29551_CR20
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1193596
– volume: 9
  start-page: 566
  year: 1984
  ident: 29551_CR1
  publication-title: Spine
  doi: 10.1097/00007632-198409000-00006
– volume: 42
  start-page: E332
  year: 2017
  ident: 29551_CR63
  publication-title: Spine
  doi: 10.1097/BRS.0000000000001789
– volume: 11
  start-page: 137
  year: 2002
  ident: 29551_CR44
  publication-title: Eur. Spine J.
  doi: 10.1007/s005860100346
– volume: 13
  start-page: 553
  year: 2004
  ident: 29551_CR64
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-004-0710-8
– volume: 47
  start-page: 1757
  year: 2014
  ident: 29551_CR54
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.04.002
– volume: 41
  start-page: 1184
  year: 2008
  ident: 29551_CR62
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.02.002
– volume: 230
  start-page: 499
  year: 2004
  ident: 29551_CR36
  publication-title: Radiology
  doi: 10.1148/radiol.2302011842
– volume: 42
  start-page: 884
  year: 2009
  ident: 29551_CR14
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.01.017
– volume: 19
  start-page: 1079
  year: 2016
  ident: 29551_CR23
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1101072
– volume: 30
  start-page: 487
  year: 2005
  ident: 29551_CR27
  publication-title: Spine
  doi: 10.1097/01.brs.0000154619.38122.47
– volume: 289
  start-page: H2048
  year: 2005
  ident: 29551_CR26
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00934.2004
– volume: 32
  start-page: 1809
  year: 2007
  ident: 29551_CR37
  publication-title: Spine
  doi: 10.1097/brs.0b013e31811ec282
– volume: 32
  start-page: 748
  year: 2007
  ident: 29551_CR48
  publication-title: Spine
  doi: 10.1097/01.brs.0000259059.90430.c2
– volume: 60
  start-page: 1393
  year: 2017
  ident: 29551_CR30
  publication-title: Ergonomics
  doi: 10.1080/00140139.2016.1265670
– volume: 40
  start-page: 2645
  year: 2007
  ident: 29551_CR59
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.01.003
– volume: 47
  start-page: 297
  year: 2014
  ident: 29551_CR46
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.014
– volume: 16
  start-page: S111
  year: 2001
  ident: 29551_CR51
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(00)00103-0
– volume-title: Modelisation du Disque Intervertebral. Theses
  year: 2013
  ident: 29551_CR60
– volume: 15
  start-page: 299
  year: 2006
  ident: 29551_CR8
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-005-0935-1
– volume: 24
  start-page: 755
  year: 1999
  ident: 29551_CR53
  publication-title: Spine
  doi: 10.1097/00007632-199904150-00005
– volume: 18
  start-page: 1013
  year: 2009
  ident: 29551_CR17
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-009-0936-6
– volume: 127
  start-page: 158
  year: 2005
  ident: 29551_CR25
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1835361
– volume: 8
  start-page: 101
  year: 1981
  ident: 29551_CR57
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008208109152130
SSID ssj0000529419
Score 2.3867035
Snippet The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator. Consequently,...
Abstract The location of the instantaneous centre of rotation (ICR) of a lumbar unit has a considerable clinical importance as a spinal health estimator....
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3172
SubjectTerms 639/166/985
639/166/988
692/698/1671/1354
Animals
Biomechanical Phenomena - physiology
Biomechanics
Humanities and Social Sciences
Intervertebral Disc - surgery
Intervertebral discs
Kinematics
Lactic acid
Lumbar Vertebrae - surgery
Mechanics
multidisciplinary
Patient-Specific Modeling
Physics
Prosthetics
Range of Motion, Articular - physiology
Science
Science (multidisciplinary)
Swine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQQN4gaP2I7xxZRrRBwolJvlj121IpVttrdInrgvzO2s2GXCrhwTZzEmvkm81nzIuQ1utQITVA1wkXWMkSHJqXxqCJD0OBi3-dOTJ8-q9mp_HDWnm2N-ko5YaU9cBHcoWxd1zjwAt8pHWs8-A50H1rfMI-nq_T3RZ-3dZgqXb15J1k3Vsk0whyu0FOlajKeRpchTaj1jifKDfvRv5yndMibXPNmyuRvcdPsjk7ukbsjj6RHZf_75FYc7pPbZbLk9QPy4ziV1aeq3qQECls503TRU2R99KJkOy7XKXQ8p6k8l-bvxrRiuSgxevoVaWhu67qipaSRzl2qWp5TH3NFDHVDoO474nh66CE5PXn_5d2sHict1NBqua4lKAN4VHLaQI9CjQyANdFpBUbKqEzjvRatDr1XLXgIqN8YvFECuFHoBx-RvWExxCeEMjCddDxK3iNzEKIDA9CyCFp1EJivCNtI3cLYhjxNw5jbHA4XxhZNWdSUzZqyuiJvpmcuSxOOv64-TsqcVqYG2vkCwsqOsLL_glVFXiEUdt4xO_po0zX87UnGtfrGKnKwQYodTX9ludZIOZEQNBV5Od1Go02RGDfExVVaYwpX5BV5XIA1fUoowwUKriJ6B3I7e9m9M1yc58bgXdcipTMVebsB569t_VleT_-HvJ6ROzzZVir2Fwdkb728is-Rrq39i2yZPwE5Qz3P
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQQZxg6hx4tjOCbWIaoWAE5X2Ztljh1askrK7reDAf2fGyaYsFb0mdh6epz3zzTD2Gk1qhCKoHNlF5jJEhyKlcasiQ9DgYtumSkyfv6jZsfw4r-fjgdtqTKvc6MSkqEMPdEa-X2qNlhz1bPHu7EdOXaMoujq20LjJblHpMkrp0nM9nbFQFEuKZsTKFJXZX6G9IkxZSQ3M0FnI9ZY9SmX70cqcUFLkVY_zauLkP9HTZJSO7rG7ozfJDwby32c3YveA3R76S_56yH4fEriesL1ECg5_ZU7zvuXo-_HTIedxuaYA8oITSJen90YaseyHSD3_js5oKu664gOwkS8cYZcX3MeEi-GuC9z9RG6eJj1ix0cfvr6f5WO_hRxqLde5BGUAN0xOG2hx4xoFgCii0wqMlFGZwntd1Tq0XtXgISCVY_BGVVAahdbwMdvp-i4-ZVyAaaQroyxb9B-qqgEDUIsIWjUQhM-Y2Ky6hbEYOfXEWNgUFK-MHShlkVI2UcrqjL2Z5pwNpTiuHX1IxJxGUhntdKFffrOjVFpZu6Zw4CtkWOlE4cE3oNtQ-0J4XIGMvUJW2HrG7OCTpWuo_KQotboQGdvbcIodFcDKXrJrxl5Ot1F0KR7jutif0xgzeIxlxp4MjDW9qlKmrHDhMqa3WG7rW7bvdKcnqTx409To2JmMvd0w5-Vn_X-9dq__i2fsTklSQ2D-ao_trJfn8Tm6Y2v_IsncHy71NEY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBggziBhFx4tjOsV1RrRBwolJvlj1xaMUqi3a3CA78d2acbGApIHFN7MSa-SbzOfMwwHNyqRGLVucEF5WrNnoyKUNbFdW2Bn3sutSJ6d17PT9Rb07r0z0ot7UwKWk_tbRMn-ltdtirNTkaLgYr-eQx8vK5uQJXuXU7o3qmZ9N_FY5cKdmM9TFFZf8wdccHpVb95FnOOBHyMsu8nCz5W8Q0OaLjm3BjZJDicFjzLdiL_W24Npwp-e0OfD_ignqu52XxC_wlW1osO0F8T5wPeY6rDQeNF4ILc0V6b-QRq-UQnRefiICmhq5rMRQzioXneuWFCDHVwgjft8J_JQRPk-7CyfHrD7N5Pp6xkGNt1CZXqC3SJskbix1tVqNElEX0RqNVKmpbhGCq2rRd0DUGbEmzsQ1WV1haTR7wHuz3yz4-ACHRNsqXUZUdcYaqatAi1jKi0Q22MmQgt1J3ODYg53MwFi4FwivrBk050pRLmnImgxfTnM9D-41_jj5iZU4juXV2urBcfXQjlJyqfVN4DBWBVHlZBAwNmq6tQyEDSSCDZwSFnWfMD986vkYfPCVLo7_IDA62SHGj0a9daQyRTaICRQZPp9tkrhyD8X1cXvAYO7DEMoP7A7CmV1XalhUJLgOzA7mdteze6c_PUkvwpqmJzNkMXm7B-XNZf5fXw_8b_giul2xFXNBfHcD-ZnURHxMl24QnyQZ_AGN9MiA
  priority: 102
  providerName: Springer Nature
Title Biomechanical consequences of the intervertebral disc centre of rotation kinematics during lateral bending and axial rotation
URI https://link.springer.com/article/10.1038/s41598-023-29551-7
https://www.ncbi.nlm.nih.gov/pubmed/36823433
https://www.proquest.com/docview/2779291230
https://www.proquest.com/docview/2780063892
https://hal.science/hal-04041276
https://pubmed.ncbi.nlm.nih.gov/PMC9950088
https://doaj.org/article/45a90acb32ec4a10bcb9c7fd5b01b837
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9IL4JjMog3iAsH47tPCDUVpuqik0IqNS3yL44bKJKoe3Q9sD_ztlJCmWDB54iOXYc-X6X-znnuwN4QSbVYlSKkODCQ15aTSolaavCy1KitlXlMzEdn4jRhI-n2XQLunJH7QIur93auXpSk8Xs9cW3y7ek8G-akHF1sCQj5ALFEleVjBhAKLdhlyyTdIp63NL9Jtd3kvM4b2Nnrh-6BzdToZKUp-mGqfIZ_ckAnbrzklfJ6NUzlX84Vr29OroNt1qiyfoNMu7Alq3vwo2m9OTlPfgxcHH3LuzXSYnhb4eq2bxiRAvZWXMccrFyvuUZc_G7zM9rXY_FvHHisy_EU33e1yVrYh7ZTLuw5hkz1ofMMF2XTF8Q0NeD7sPk6PDTcBS2pRhCzCRfhRyFQtpLaamwoj2tjRHjyGopUHFuhYqMkWkmy8qIDA2WBABbGiVSTJQgQ_kAdup5bR8Bi1HlXCeWJxVRizTNUSFmsUUpcixjE0DcrXqBbZ5yVy5jVnh_eaqKRmgFCa3wQitkAC_XY742WTr-2XvghLnu6TJs-4b54nPRKmzBM51HGk1KWOY6jgyaHGVVZiaKDa1AAM8JChvPGPXfFa6Nvos8TqT4Hgew3yGl6KBdJFISJyXGEAXwbH2btNq5anRt5-euj2rIZBLAwwZY66k6eAYgNyC38S6bd-qzU585PM8z4nwqgFcdOH-91t_X6_F_T_QE9hKnWy4FQLoPO6vFuX1KJG5lerAtp7IHu_3--OOYroPDk_cfqHUohj3_Y6Tndfcn_tFKsQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qUyG4IHYCBQyCE0TN4sTOAaEOtJrS6QihVurN2C8OrRglZWYK9MBf4jfynK0MFb31mjib3_a9vA3gBZlUi0Ge-sQu3Oe51SRSglwVnucCtS2KuhPT7iQd7fMPB8nBCvzuamFcWmWnE2tFnVfo_pGvR0KQJSc9G7w9_ua7qVEuutqN0GjYYsee_iCXbf5m-z3R92UUbW3uvRv57VQBHxPBFz7HVCK5BVpILMg9syFiGFgtUpSc21QGxog4EXlh0gQN5vQtNjcyjTGSKel8uu8VWOUxuTIDWB1uTj5-6v_quLgZD7O2OieI5fqcLKSrYovcyDSCJ75YsoD1oACya4cuDfM8xj2fqvlPvLY2g1s34UaLX9lGw3C3YMWWt-FqM9Hy9A78GrpyfldN7IjP8K9cbVYVjNAmO2qyLGcLF7KeMlcWzOrnWrdiVjW5Aewrwd-6neycNaWUbKpdtfSUGVtX4jBd5kz_JPnpL7oL-5dCi3swKKvSPgAWosy4jiyPCkIscZyhRExCiyLNMA-NB2G36wrb9uduCsdU1WH4WKqGUooopWpKKeHBq_6a46b5x4Wrh46Y_UrXuLs-UM2-qFYPKJ7oLNBoYhIRrsPAoMlQFHligtDQDnjwnFhh6R6jjbFyx0jd8jAS6ffQg7WOU1SrcubqTEA8eNafJmXhIkC6tNWJWyMbjBp5cL9hrP5RcSqjmDbOA7HEckvvsnymPDqsG5JnWUJQUnrwumPOs9f6_349vPgrnsK10d7uWI23JzuP4HrkJMi1EojXYLCYndjHBAYX5kkrgQw-X7bQ_wGsFnOR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggEFwgmjzcGLngFBLWW1pqThQqTdjTxxasUrK7hbogT_Gr2PGeZSlordek8nL883DmRdjz9GkOojKPES4iFCUzqBISdyqiLKUYFxV-U5MH3bzyZ54v5_tr7DffS0MpVX2OtEr6rIB-kc-SqRES456NhpVXVrEx83xm6NvIU2QokhrP06jhci2O_mB27f5661N5PWLJBm_-_R2EnYTBkLIpFiEAnIFuEUwUkGFWzUXA8SRMzIHJYTLVWStTDNZVjbPwEKJ3-VKq_IUEpWj_sf7XmKXkSQmGZP7cvi_QxE0ERddnU6UqtEcbSXVsyU0PA0dlVAu2UI_MgAt3AElZJ71ds8mbf4TufUGcXyDXe88Wb7eQu8mW3H1LXalnW15cpv92qDCfqorJhhw-CtrmzcVR7-TH7b5lrMFBa-nnAqEuX-uI4pZ02YJ8K_oCPvGsnPeFlXyqaG66Sm3ztfkcFOX3PxESRouusP2LoQTd9lq3dTuPuMxqEKYxImkQt8lTQtQAFnsQOYFlLENWNyvuoauETrN45hqH5BPlW45pZFT2nNKy4C9HK45atuAnEu9QcwcKKmFtz_QzL7oTiNokZkiMmBTFBZh4siCLUBWZWaj2OIKBOwZQmHpHpP1HU3HUPGKOJH59zhgaz1SdKd85vpUVAL2dDiNaoNiQaZ2zTHRqNZbTQJ2rwXW8Kg0V0mKCxcwuQS5pXdZPlMfHvjW5EWRoVOpAvaqB-fpa_1_vR6c_xVP2FUUdb2ztbv9kF1LSICop0C6xlYXs2P3CL3ChX3sxY-zzxct738AtFh2YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomechanical+consequences+of+the+intervertebral+disc+centre+of+rotation+kinematics+during+lateral+bending+and+axial+rotation&rft.jtitle=Scientific+reports&rft.au=Allais%2C+Roman&rft.au=Capart%2C+Antoine&rft.au=Da+Silva%2C+Anabela&rft.au=Boiron%2C+Olivier&rft.date=2023-02-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-29551-7&rft_id=info%3Apmid%2F36823433&rft.externalDocID=PMC9950088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon