MSPCD: predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network
Increasing evidence shows that circRNA plays an essential regulatory role in diseases through interactions with disease-related miRNAs. Identifying circRNA-disease associations is of great significance to precise diagnosis and treatment of diseases. However, the traditional biological experiment is...
Saved in:
Published in | BMC bioinformatics Vol. 23; no. Suppl 8; pp. 1 - 427 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
14.10.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Increasing evidence shows that circRNA plays an essential regulatory role in diseases through interactions with disease-related miRNAs. Identifying circRNA-disease associations is of great significance to precise diagnosis and treatment of diseases. However, the traditional biological experiment is usually time-consuming and expensive. Hence, it is necessary to develop a computational framework to infer unknown associations between circRNA and disease. In this work, we propose an efficient framework called MSPCD to infer unknown circRNA-disease associations. To obtain circRNA similarity and disease similarity accurately, MSPCD first integrates more biological information such as circRNA-miRNA associations, circRNA-gene ontology associations, then extracts circRNA and disease high-order features by the neural network. Finally, MSPCD employs DNN to predict unknown circRNA-disease associations. Experiment results show that MSPCD achieves a significantly more accurate performance compared with previous state-of-the-art methods on the circFunBase dataset. The case study also demonstrates that MSPCD is a promising tool that can effectively infer unknown circRNA-disease associations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-022-04976-5 |