Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons

Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sedime...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 23; no. 4; pp. 3239 - 3246
Main Authors Rončević, Srđan, Spasojević, Jelena, Maletić, Snežana, Jazić, Jelena Molnar, Isakovski, Marijana Kragulj, Agbaba, Jasmina, Grgić, Marko, Dalmacija, Božo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.
Bibliography:http://dx.doi.org/10.1007/s11356-015-5566-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-015-5566-4