Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex
The lipocalin protein Scn-Ngal is known to bind iron-chelating siderophores, leading to inhibition of bacterial growth. New results reveal that Scn-Ngal, in the absence of bacterial infection, can form a complex with catechol that binds and transports iron in vivo . The lipocalins are secreted prote...
Saved in:
Published in | Nature Chemical Biology Vol. 6; no. 8; pp. 602 - 609 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.08.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The lipocalin protein Scn-Ngal is known to bind iron-chelating siderophores, leading to inhibition of bacterial growth. New results reveal that Scn-Ngal, in the absence of bacterial infection, can form a complex with catechol that binds and transports iron
in vivo
.
The lipocalins are secreted proteins that bind small organic molecules. Scn-Ngal (also known as neutrophil gelatinase associated lipocalin, siderocalin, lipocalin 2) sequesters bacterial iron chelators, called siderophores, and consequently blocks bacterial growth. However, Scn-Ngal is also prominently expressed in aseptic diseases, implying that it binds additional ligands and serves additional functions. Using chemical screens, crystallography and fluorescence methods, we report that Scn-Ngal binds iron together with a small metabolic product called catechol. The formation of the complex blocked the reactivity of iron and permitted its transport once introduced into circulation
in vivo
. Scn-Ngal then recycled its iron in endosomes by a pH-sensitive mechanism. As catechols derive from bacterial and mammalian metabolism of dietary compounds, the Scn-Ngal–catechol–Fe
(III)
complex represents an unforeseen microbial-host interaction, which mimics Scn-Ngal–siderophore interactions but instead traffics iron in aseptic tissues. These results identify an endogenous siderophore, which may link the disparate roles of Scn-Ngal in different diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Equal Contribution |
ISSN: | 1552-4450 1548-7105 1552-4469 |
DOI: | 10.1038/nchembio.402 |