Curcumin Alleviates Chronic Pain and Improves Cognitive Impairment via Enhancing Hippocampal Neurogenesis in Sciatic Nerve Constriction Rats

Cognitive impairment is a complication that most frequently happens in patients with chronic neuropathic pain and has limited effective therapy. The aim of this study was to explore the effects of curcumin on the cognitive deficit in rats with peripheral nerve injury induced-neuropathic pain. The ne...

Full description

Saved in:
Bibliographic Details
Published inJournal of pain research Vol. 14; pp. 1061 - 1070
Main Authors Du, Jingyi, Deng, Yifan, Qiu, Zhuolin, Sun, Guoliang, Guo, Yue, Hei, Ziqing, Li, Xiang
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2021
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cognitive impairment is a complication that most frequently happens in patients with chronic neuropathic pain and has limited effective therapy. The aim of this study was to explore the effects of curcumin on the cognitive deficit in rats with peripheral nerve injury induced-neuropathic pain. The neuropathic pain rat model was constructed using chronic constriction injury (CCI). The curcumin (60 mg/kg) or vehicle was intraperitoneally administered once a day, beginning at 14th day after surgery and continued for 14 consecutive days. The nociceptive threshold tests were measured by paw mechanical withdraw threshold (PMWT) and paw thermal withdrawal latency (PTWL), while the spatial memory abilities were evaluated by the Morris water maze test. The mean counts of bromodeoxyuridine (Brdu)/neuronal nuclei (NeuN) as well as Brdu/doublecortin (DCX) co-labeled cells were used to evaluate neurogenesis in the dentate gyrus of hippocampus. The ultrastructure of the synapse in hippocampal region was visualized using transmission electron microscopy (TEM). Increased PMWT and PTWL, as well as relieved memory deficits, were found in CCI rats under curcumin administration. Moreover, curcumin treatment increased the number of newly born immature (BrdU/NeuN) and newly generated mature neurons (BrdU/DCX). The TEM examination revealed increased PSD thickness and shorter active zone length as well as narrowed synaptic cleft width in the hippocampal region of CCI rats after curcumin injection. Curcumin can alleviate CCI induced nociceptive behaviors and memory deficit. This effect might be associated with hippocampal neurogenesis and synaptic plasticity improvements, which indicated curcumin as a potential strategy for the cognitive impairment restoration under prolonged neuropathic pain condition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ISSN:1178-7090
1178-7090
DOI:10.2147/JPR.S299604