3D-Printed Chitosan-Based Scaffolds with Scutellariae baicalensis Extract for Dental Applications

The plant material , which is rich in flavones (baicalin), possesses antibacterial, antifungal, antioxidant, and anti-inflammatory properties. This work aimed to develop a 3D-printed chitosan-based hydrogel rich in extract as an innovative approach for the personalized treatment of periodontal disea...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 16; no. 3; p. 359
Main Authors Paczkowska-Walendowska, Magdalena, Koumentakou, Ioanna, Lazaridou, Maria, Bikiaris, Dimitrios, Miklaszewski, Andrzej, Plech, Tomasz, Cielecka-Piontek, Judyta
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The plant material , which is rich in flavones (baicalin), possesses antibacterial, antifungal, antioxidant, and anti-inflammatory properties. This work aimed to develop a 3D-printed chitosan-based hydrogel rich in extract as an innovative approach for the personalized treatment of periodontal diseases. Chitosan-based hydrogels were prepared, and the printability of the prepared hydrogels was determined. The hydrogel with 2.5% / of high molecular-weight chitosan (CS), 2% / gelatin (Gel), and 10% / of extract (Ex) presented the best printability, producing smooth and uniform scaffolds. It was proved that the CS/Gel/Ex hydrogel was stabilized by hydrogen bonds and remained in amorphous dispersion in the 3D-printed structures (confirmed by ATR-FTIR and XRPD). Due to the amorphization of the active substance, a significant increase in the release of baicalin in vitro was observed. It was demonstrated that there was an initial burst release and a continuous release profile ( = 3). Higuchi kinetic was the most likely baicalin release kinetic. The second fit, the Korsmeyer-Peppas kinetics model, showed coupled diffusion of the active ingredient in the hydrated matrix and polymer relaxation regulated release, with n values ranging from 0.45 to 0.89. The anti-inflammatory properties of 3D-printed scaffolds were assessed as the ability to inhibit the activity of the hyaluronidase enzyme. Activity was assessed as IC = 63.57 ± 4.98 mg hydrogel/mL ( = 6). Cytotoxicity tests demonstrated the biocompatibility of the material. After 24 h of exposure to the 2.5CS/2Gel/10Ex scaffold, fibroblasts migrated toward the scratch, closed the "wound" by 97.1%, and significantly accelerated the wound healing process. The results render the 3D-printed CS/Gel/extract scaffolds as potential candidates for treating periodontal diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16030359