Predicting Sarcopenia of Female Elderly from Physical Activity Performance Measurement Using Machine Learning Classifiers

Sarcopenia is a symptom in which muscle mass decreases due to decreasing in the number of muscle fibers and muscle cross-sectional area as aging. This study aimed to develop a machine learning classification model for predicting sarcopenia through a inertial measurement unit (IMU)-based physical per...

Full description

Saved in:
Bibliographic Details
Published inClinical interventions in aging Vol. 16; pp. 1723 - 1733
Main Authors Ko, Jeong Bae, Kim, Kwang Bok, Shin, Young Sub, Han, Hun, Han, Sang Kuy, Jung, Duk Young, Hong, Jae Soo
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2021
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sarcopenia is a symptom in which muscle mass decreases due to decreasing in the number of muscle fibers and muscle cross-sectional area as aging. This study aimed to develop a machine learning classification model for predicting sarcopenia through a inertial measurement unit (IMU)-based physical performance measurement data of female elderly. Seventy-eight female subjects from an elderly population (aged: 78.8±5.7 years) volunteered to participate in this study. To evaluate the physical performance of the elderly, the experiment conducted timed-up-and-go test (TUG) and 6-minute walk test (6mWT) with worn a single IMU. Based on literature review, 132 features were extracted from collected data. Feature selection was performed through the Kruskal-Wallis test, and features datasets were constructed according to feature selection. Three major machine learning-based classification algorithms classified the sarcopenia group in each dataset, and the performance of classification models was compared. As a result of comparing the classification model performance for sarcopenia prediction, the k-nearest neighborhood algorithm (kNN) classification model using 40 major features of TUG and 6mWT showed the best performance at 88%. This study can be used as a basic research for the development of self-monitoring technology for sarcopenia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ISSN:1178-1998
1176-9092
1178-1998
DOI:10.2147/CIA.S323761