Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato

Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 63; no. 5; pp. 836 - 847
Main Authors Nambeesan, Savithri, Datsenka, Tatsiana, Ferruzzi, Mario G, Malladi, Anish, Mattoo, Autar K, Handa, Avtar K
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2010
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit-ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8-ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild-type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation-related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd-mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35S-ySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole-plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post-harvest senescence and decay.
Bibliography:http://dx.doi.org/10.1111/j.1365-313X.2010.04286.x
http://hdl.handle.net/10113/49411
Present address: 111 Riverbend Road, Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2010.04286.x