多无源传感器去相关数据关联算法

对基于多维分配模型的多无源传感器(Multipassive.sensorsystem,MPSS)多目标数据关联算法进行了归纳分析,指出该模型不仅忽略了极大似然估计所引入的随机误差,而且未充分考虑量测与伪量测之间的相关性.继而建立了一种去相关修正数据关联模型,并提出利用无迹变换计算二者之间的互协方差.另外定义了概念“解的区分度,,来评估关联代价构造的合理性.最后进行了仿真实验,结果表明去相关后的关联代价能更精准地反映数据关联的可能性,所提关联算法运算时间有所增加,但关联性能更佳....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 40; no. 3; pp. 497 - 505
Main Author 鹿传国 冯新喜 孔云波 张迪
Format Journal Article
LanguageChinese
Published 装甲兵工程学院 北京 100072 2014
空军工程大学信息与导航学院 西安710077
95806部队 北京100076%空军工程大学信息与导航学院 西安710077%中国航空博物馆 北京 102211
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2014.00497

Cover

More Information
Summary:对基于多维分配模型的多无源传感器(Multipassive.sensorsystem,MPSS)多目标数据关联算法进行了归纳分析,指出该模型不仅忽略了极大似然估计所引入的随机误差,而且未充分考虑量测与伪量测之间的相关性.继而建立了一种去相关修正数据关联模型,并提出利用无迹变换计算二者之间的互协方差.另外定义了概念“解的区分度,,来评估关联代价构造的合理性.最后进行了仿真实验,结果表明去相关后的关联代价能更精准地反映数据关联的可能性,所提关联算法运算时间有所增加,但关联性能更佳.
Bibliography:LU Chuan-Guo, FENG Xin-Xi,KONG Yun-Bo,ZHANG Di ( 1. School of Information and Navigation, Airforce Engineer- ing University, Xi~an 710077 2. 95806 Unit, PLA, Beijing 100076 3. Chinese Aviation Museum, Beijing 102211 4. China Academy of Armored Force Engineering, Beijing 100072)
Data association, multi-passive-sensor, decorrelation, unscented
After summarizing and analyzing the multi-target data association algorithms based on the S-D assignment for multi-passive-sensor system, it is pointed out that the association algorithms above have ignored both the error introduced by the maximum likelihood estimation and the relativity between the measurements and the pseudo ones. Then, a decorrelation-based data association model is built and the unscented transform is proposed to compute the mutual covariance between measurements and the pseudo ones. Meanwhile, a new concept, the discrimination of answers, is defined to evaluate the association cost forming methods. Lastly, results of simulation have shown that the unco
ISSN:0254-4156
1874-1029
DOI:10.3724/SP.J.1004.2014.00497