Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles

The sorption ability of fast-coprecipitated and hydrothermally-treated Mg/Al layered double hydroxide nanoparticles (FCHT-LDH) for various oxyhalides and oxyanions was evaluated. Interactions of oxyhalide such as monovalent bromate or oxyanions such as divalent chromate and divalent vanadate with FC...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 179; no. 1; pp. 818 - 827
Main Authors Goh, Kok-Hui, Lim, Teik-Thye, Banas, Agnieszka, Dong, Zhiling
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.07.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The sorption ability of fast-coprecipitated and hydrothermally-treated Mg/Al layered double hydroxide nanoparticles (FCHT-LDH) for various oxyhalides and oxyanions was evaluated. Interactions of oxyhalide such as monovalent bromate or oxyanions such as divalent chromate and divalent vanadate with FCHT-LDH were investigated using a combination of macroscopic (batch sorption/desorption studies and electrophoretic mobility (EM) measurements) and microscopic techniques (CHNS/O, XRD, FTIR, XPS, and EXAFS analyses). The sorption studies on various oxyanions and oxyhalides suggested that their sorption characteristics on FCHT-LDH were largely governed by their ionic potentials and molecular structures. Oxyanions which have ionic potentials higher than 7 nm −1 were found to be more readily sorbed by FCHT-LDH than oxyhalides with ionic potentials lower than 5 nm −1. The results obtained also demonstrated that trigonal pyramid oxyhalides showed a lower degree of specificity for FCHT-LDH than the tetrahedral coordinated oxyanions. From the macroscopic and microscopic studies, monovalent oxyhalide sorption on FCHT-LDH was postulated to occur mainly via anion exchange mechanism with subsequent formation of outer-sphere surface complexes. For polyvalent oxyanion sorption on FCHT-LDH, the mechanisms were possibly associated with both anion exchange and ligand exchange reactions, resulting in the coexistence of outer-sphere and inner-sphere surface complexes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2010.03.077