Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs
Chang and colleagues report the involvement of a Dicer-microRNA-cMyc signaling axis in the transcriptional regulation of a large set of long noncoding RNAs (lncRNAs). These lncRNAs are specifically dependent on cMyc, as compared to divergently transcribed protein-coding genes. Long noncoding RNAs (l...
Saved in:
Published in | Nature structural & molecular biology Vol. 21; no. 7; pp. 585 - 590 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chang and colleagues report the involvement of a Dicer-microRNA-cMyc signaling axis in the transcriptional regulation of a large set of long noncoding RNAs (lncRNAs). These lncRNAs are specifically dependent on cMyc, as compared to divergently transcribed protein-coding genes.
Long noncoding RNAs (lncRNAs) are important regulators of cell fate, yet little is known about mechanisms controlling lncRNA expression. Here we show that transcription is quantitatively different for lncRNAs and mRNAs—as revealed by deficiency of Dicer (Dcr), a key RNase that generates microRNAs (miRNAs). Dcr loss in mouse embryonic stem cells led unexpectedly to decreased levels of hundreds of lncRNAs. The canonical Dgcr8-Dcr-miRNA pathway is required for robust lncRNA transcriptional initiation and elongation. Computational and genetic epistasis analyses demonstrated that Dcr activation of the oncogenic transcription factor cMyc is partly responsible for lncRNA expression. A quantitative metric of mRNA-lncRNA decoupling revealed that Dcr and cMyc differentially regulate lncRNAs versus mRNAs in diverse cell types and
in vivo
. Thus, numerous lncRNAs may be modulated as a class in development and disease, notably where Dcr and cMyc act. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/nsmb.2842 |