Image resolution enhancement for healthy weight-bearing bones based on topology optimization

Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement technique...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 49; no. 13; pp. 3035 - 3040
Main Authors Kim, Jung Jin, Jang, In Gwun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 06.09.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2016.06.012

Cover

Loading…
Abstract Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.
AbstractList Abstract Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.
Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.
Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.
Author Jang, In Gwun
Kim, Jung Jin
Author_xml – sequence: 1
  givenname: Jung Jin
  surname: Kim
  fullname: Kim, Jung Jin
  email: kjj4537@kaist.ac.kr
– sequence: 2
  givenname: In Gwun
  surname: Jang
  fullname: Jang, In Gwun
  email: igjang@kaist.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27345106$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6FcqAL77MepP5kwRELMVqoeCD-iaETObObtaZyZpklPXTN-O2CvtgFy4Jgd853Jtzz8jJ6EYk5ILCkgKtX2-Wm8a6Ac16ydJ7Cakoe0IWVPAiZ4WAE7IAYDSXTMIpOQthAwC85PIZOWW8KCsK9YJ8uxn0CjOPwfVTtG7McFzr0eCAY8w657M16j6ud9kvtKt1zBvU3o6rrEn9hKzRAdssqaLbut6tdpnbRjvY33r2ek6edroP-OL-Pidfr99_ufqY3376cHN1eZubirOYC06NlKwFZiptoNOyLWQrUbY1K01hKjCsQcpFWwKIytRNSUVXdKYQstKVKc7Jq73v1rsfE4aoBhsM9r0e0U1BUVFWgso0_REo4zIdQhyD1hwSXCf05QG6cZMf08wzJVgBsuKJurinpmbAVm29HbTfqYc0ElDvAeNdCB67vwgFNceuNuohdjXHriAVZUn45kBobPwTQfTa9o_L3-3lmEL6adGrYCymJWitRxNV6-zjFm8PLExvR2t0_x13GP59hwpMgfo8r-a8mbQuoOZ19X-DYzq4AxCA9jE
CitedBy_id crossref_primary_10_1155_2019_4102410
crossref_primary_10_1007_s10237_021_01473_1
crossref_primary_10_1109_JESTPE_2019_2902258
crossref_primary_10_7736_JKSPE_022_041
crossref_primary_10_1016_j_compbiomed_2024_108929
crossref_primary_10_1016_j_cmpb_2017_11_007
crossref_primary_10_3390_bioengineering9110644
crossref_primary_10_7736_JKSPE_022_068
crossref_primary_10_1016_j_ijnonlinmec_2023_104458
crossref_primary_10_1002_cnm_70015
crossref_primary_10_1007_s00158_022_03183_3
crossref_primary_10_1002_cnm_2950
crossref_primary_10_1016_j_cma_2024_117378
crossref_primary_10_3390_biology12020170
crossref_primary_10_1007_s00158_018_1970_y
crossref_primary_10_1109_TIE_2022_3148751
crossref_primary_10_1002_cnm_3845
crossref_primary_10_1016_j_cmpb_2022_107054
crossref_primary_10_1109_JESTPE_2017_2688999
crossref_primary_10_1007_s10237_022_01662_6
crossref_primary_10_3390_app15052829
crossref_primary_10_1109_ACCESS_2022_3227388
crossref_primary_10_7736_JKSPE_023_054
crossref_primary_10_1016_j_eswa_2024_126299
crossref_primary_10_1016_j_jmbbm_2020_103805
Cites_doi 10.1016/j.jbiomech.2005.10.027
10.1016/j.jbiomech.2008.05.037
10.1016/j.jbiomech.2008.12.009
10.1115/1.3005202
10.1007/BF01650949
10.1109/38.988747
10.1016/j.bone.2011.08.018
10.1002/jbmr.141
10.1016/j.jbiomech.2009.09.042
10.1016/j.clinbiomech.2013.12.019
10.1007/BF01673421
10.1109/TIT.2006.871582
10.1016/j.rcl.2010.02.015
10.3233/THC-1998-65-611
10.1002/jbmr.5650020617
10.1002/nme.1620240207
10.1016/0021-9290(94)90014-0
10.1016/S1350-4533(01)00045-5
10.1016/8756-3282(93)90085-O
10.1093/ajcn/79.3.362
10.1016/j.ejrad.2015.07.027
10.1055/s-0028-1144106
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
P64
DOI 10.1016/j.jbiomech.2016.06.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Research Library Prep

Technology Research Database
Engineering Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 3040
ExternalDocumentID 4213477671
27345106
10_1016_j_jbiomech_2016_06_012
S0021929016306765
1_s2_0_S0021929016306765
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
P64
ID FETCH-LOGICAL-c572t-871c992d02c5ac0fa9d39d9e9d624c3c50c2be178d40085c6b418f3fc3895a5c3
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Tue Aug 05 11:01:35 EDT 2025
Fri Jul 11 09:02:22 EDT 2025
Fri Jul 11 12:02:31 EDT 2025
Wed Aug 13 11:28:45 EDT 2025
Wed Feb 19 02:42:33 EST 2025
Tue Jul 01 01:14:11 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Feb 25 20:12:59 EST 2025
Tue Aug 26 17:10:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Topology optimization
Resolution enhancement
Bone microstructure
Bone remodeling
Skeletal image
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-871c992d02c5ac0fa9d39d9e9d624c3c50c2be178d40085c6b418f3fc3895a5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27345106
PQID 1828230957
PQPubID 1226346
PageCount 6
ParticipantIDs proquest_miscellaneous_1845819074
proquest_miscellaneous_1827918288
proquest_miscellaneous_1826709186
proquest_journals_1828230957
pubmed_primary_27345106
crossref_primary_10_1016_j_jbiomech_2016_06_012
crossref_citationtrail_10_1016_j_jbiomech_2016_06_012
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_06_012
elsevier_clinicalkeyesjournals_1_s2_0_S0021929016306765
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_06_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-06
PublicationDateYYYYMMDD 2016-09-06
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Jang, Kim (bib10) 2009; 42
Bendsøe (bib1) 1989; 1
Jang, Kim (bib11) 2010; 43
Jang, Kim, Kwak (bib12) 2009; 131
Freeman, Jones, Pasztor (bib5) 2002; 22
Krug, Burghardt, Majumdar, Link (bib14) 2010; 48
Goldstein, Goulet, McCubbrey (bib6) 1993; 53
Levchuk, Zwahlen, Weigt, Lambers, Badilatti, Schulte, Kuhn, Müller (bib16) 2014; 29
Parfitt, Drezner, Glorieux, Kanis, Malluche, Meunier, Ott, Recker (bib17) 1987; 2
Wolff, J., 1892. Das Gesetz der Transformation der Knochen. Hirchwild, Berlin.
Donoho (bib4) 2006; 52
Lee, Kim, Kim, Jang (bib15) 2015; 84
Burr, Akkus (bib3) 2014
Shrimpton, Hillier, Lewis, Dunn (bib20) 2005
Verhulp, van Rietbergen, Huiskes (bib23) 2006; 39
Peyrin, Salome, Cloetens, Laval-Jeantet, Ritman, Rüegsegger (bib18) 1998; 6
Bouxsein, Boyd, Christiansen, Guldberg, Jepsen, Müller (bib2) 2010; 25
Svanberg (bib21) 1987; 24
Keyak (bib13) 2001; 23
Jang, Kim (bib9) 2008; 41
Holick (bib8) 2004; 79
Schulte, Lambers, Webster, Kuhn, Müller (bib19) 2011; 49
Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib7) 1994; 27
van Der Meulen, Beaupré, Carter (bib22) 1993; 14
Jang (10.1016/j.jbiomech.2016.06.012_bib11) 2010; 43
Keyak (10.1016/j.jbiomech.2016.06.012_bib13) 2001; 23
Jang (10.1016/j.jbiomech.2016.06.012_bib9) 2008; 41
Parfitt (10.1016/j.jbiomech.2016.06.012_bib17) 1987; 2
Jang (10.1016/j.jbiomech.2016.06.012_bib10) 2009; 42
Krug (10.1016/j.jbiomech.2016.06.012_bib14) 2010; 48
Levchuk (10.1016/j.jbiomech.2016.06.012_bib16) 2014; 29
Peyrin (10.1016/j.jbiomech.2016.06.012_bib18) 1998; 6
Goldstein (10.1016/j.jbiomech.2016.06.012_bib6) 1993; 53
Bouxsein (10.1016/j.jbiomech.2016.06.012_bib2) 2010; 25
Burr (10.1016/j.jbiomech.2016.06.012_bib3) 2014
Shrimpton (10.1016/j.jbiomech.2016.06.012_bib20) 2005
10.1016/j.jbiomech.2016.06.012_bib24
Bendsøe (10.1016/j.jbiomech.2016.06.012_bib1) 1989; 1
Goulet (10.1016/j.jbiomech.2016.06.012_bib7) 1994; 27
Donoho (10.1016/j.jbiomech.2016.06.012_bib4) 2006; 52
van Der Meulen (10.1016/j.jbiomech.2016.06.012_bib22) 1993; 14
Lee (10.1016/j.jbiomech.2016.06.012_bib15) 2015; 84
Schulte (10.1016/j.jbiomech.2016.06.012_bib19) 2011; 49
Svanberg (10.1016/j.jbiomech.2016.06.012_bib21) 1987; 24
Verhulp (10.1016/j.jbiomech.2016.06.012_bib23) 2006; 39
Freeman (10.1016/j.jbiomech.2016.06.012_bib5) 2002; 22
Holick (10.1016/j.jbiomech.2016.06.012_bib8) 2004; 79
Jang (10.1016/j.jbiomech.2016.06.012_bib12) 2009; 131
References_xml – volume: 79
  start-page: 362
  year: 2004
  end-page: 371
  ident: bib8
  article-title: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis
  publication-title: Am. J. Clin. Nutr.
– volume: 23
  start-page: 165
  year: 2001
  end-page: 173
  ident: bib13
  article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models
  publication-title: Med. Eng. Phys.
– volume: 84
  start-page: 2261
  year: 2015
  end-page: 2268
  ident: bib15
  article-title: Homeostasis-based aging model for trabecular changes and its correlation with age-matched bone mineral densities and radiographs
  publication-title: Eur. J. Radiol.
– volume: 49
  start-page: 1166
  year: 2011
  end-page: 1172
  ident: bib19
  article-title: In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography
  publication-title: Bone
– volume: 43
  start-page: 492
  year: 2010
  end-page: 499
  ident: bib11
  article-title: Computational study on the effect of loading alteration caused by disc degeneration on the trabecular architecture in human lumbar spine
  publication-title: J. Biomech.
– volume: 29
  start-page: 355
  year: 2014
  end-page: 362
  ident: bib16
  article-title: The clinical biomechanics award 2012 – Presented by the European Society of biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment
  publication-title: Clin. Biomech.
– year: 2005
  ident: bib20
  article-title: Doses from Computed Tomography (CT) Examinations in the UK – 2003 Review
– volume: 14
  start-page: 635
  year: 1993
  end-page: 642
  ident: bib22
  article-title: Mechanobiologic influences in long bone cross-sectional growth
  publication-title: Bone
– reference: Wolff, J., 1892. Das Gesetz der Transformation der Knochen. Hirchwild, Berlin.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: bib1
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– volume: 42
  start-page: 573
  year: 2009
  end-page: 580
  ident: bib10
  article-title: Computational simulation of trabecular adaptation progress in human proximal femur during growth
  publication-title: J. Biomech.
– volume: 48
  start-page: 601
  year: 2010
  end-page: 621
  ident: bib14
  article-title: High-Resolution imaging techniques for the assessment of osteoporosis
  publication-title: Radiol. Clin. North Am.
– volume: 27
  start-page: 375
  year: 1994
  end-page: 389
  ident: bib7
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: bib21
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Methods Eng.
– volume: 22
  start-page: 56
  year: 2002
  end-page: 65
  ident: bib5
  article-title: Example-based super-resolution
  publication-title: IEEE Comput. Graph. Appl.
– volume: 2
  start-page: 595
  year: 1987
  end-page: 610
  ident: bib17
  article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee
  publication-title: J. Bone Miner. Res.
– volume: 25
  start-page: 1468
  year: 2010
  end-page: 1486
  ident: bib2
  article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography
  publication-title: J. Bone Miner. Res.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib4
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 6
  start-page: 391
  year: 1998
  end-page: 401
  ident: bib18
  article-title: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2
  publication-title: Technol. Health Care
– volume: 53
  start-page: 127
  year: 1993
  end-page: 133
  ident: bib6
  article-title: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone
  publication-title: Calcif. Tissue Int.
– volume: 131
  start-page: 011012
  year: 2009
  ident: bib12
  article-title: Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization
  publication-title: J. Biomech. Eng.
– volume: 39
  start-page: 2951
  year: 2006
  end-page: 2957
  ident: bib23
  article-title: Comparison of micro-level and continuum-level voxel models of the proximal femur
  publication-title: J. Biomech.
– year: 2014
  ident: bib3
  article-title: Basic and Applied Bone Biology
– volume: 41
  start-page: 2353
  year: 2008
  end-page: 2361
  ident: bib9
  article-title: Computational study of Wolff׳s law with trabecular architecture in the human proximal femur using topology optimization
  publication-title: J. Biomech.
– year: 2014
  ident: 10.1016/j.jbiomech.2016.06.012_bib3
– volume: 39
  start-page: 2951
  year: 2006
  ident: 10.1016/j.jbiomech.2016.06.012_bib23
  article-title: Comparison of micro-level and continuum-level voxel models of the proximal femur
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.10.027
– year: 2005
  ident: 10.1016/j.jbiomech.2016.06.012_bib20
– volume: 41
  start-page: 2353
  year: 2008
  ident: 10.1016/j.jbiomech.2016.06.012_bib9
  article-title: Computational study of Wolff׳s law with trabecular architecture in the human proximal femur using topology optimization
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.05.037
– volume: 42
  start-page: 573
  year: 2009
  ident: 10.1016/j.jbiomech.2016.06.012_bib10
  article-title: Computational simulation of trabecular adaptation progress in human proximal femur during growth
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.12.009
– volume: 131
  start-page: 011012
  year: 2009
  ident: 10.1016/j.jbiomech.2016.06.012_bib12
  article-title: Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3005202
– volume: 1
  start-page: 193
  year: 1989
  ident: 10.1016/j.jbiomech.2016.06.012_bib1
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 22
  start-page: 56
  year: 2002
  ident: 10.1016/j.jbiomech.2016.06.012_bib5
  article-title: Example-based super-resolution
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.988747
– volume: 49
  start-page: 1166
  year: 2011
  ident: 10.1016/j.jbiomech.2016.06.012_bib19
  article-title: In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography
  publication-title: Bone
  doi: 10.1016/j.bone.2011.08.018
– volume: 25
  start-page: 1468
  year: 2010
  ident: 10.1016/j.jbiomech.2016.06.012_bib2
  article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.141
– volume: 43
  start-page: 492
  year: 2010
  ident: 10.1016/j.jbiomech.2016.06.012_bib11
  article-title: Computational study on the effect of loading alteration caused by disc degeneration on the trabecular architecture in human lumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.042
– volume: 29
  start-page: 355
  year: 2014
  ident: 10.1016/j.jbiomech.2016.06.012_bib16
  article-title: The clinical biomechanics award 2012 – Presented by the European Society of biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2013.12.019
– volume: 53
  start-page: 127
  year: 1993
  ident: 10.1016/j.jbiomech.2016.06.012_bib6
  article-title: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/BF01673421
– volume: 52
  start-page: 1289
  year: 2006
  ident: 10.1016/j.jbiomech.2016.06.012_bib4
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 48
  start-page: 601
  year: 2010
  ident: 10.1016/j.jbiomech.2016.06.012_bib14
  article-title: High-Resolution imaging techniques for the assessment of osteoporosis
  publication-title: Radiol. Clin. North Am.
  doi: 10.1016/j.rcl.2010.02.015
– volume: 6
  start-page: 391
  year: 1998
  ident: 10.1016/j.jbiomech.2016.06.012_bib18
  article-title: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2μm level
  publication-title: Technol. Health Care
  doi: 10.3233/THC-1998-65-611
– volume: 2
  start-page: 595
  year: 1987
  ident: 10.1016/j.jbiomech.2016.06.012_bib17
  article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650020617
– volume: 24
  start-page: 359
  year: 1987
  ident: 10.1016/j.jbiomech.2016.06.012_bib21
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620240207
– volume: 27
  start-page: 375
  year: 1994
  ident: 10.1016/j.jbiomech.2016.06.012_bib7
  article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90014-0
– volume: 23
  start-page: 165
  year: 2001
  ident: 10.1016/j.jbiomech.2016.06.012_bib13
  article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(01)00045-5
– volume: 14
  start-page: 635
  year: 1993
  ident: 10.1016/j.jbiomech.2016.06.012_bib22
  article-title: Mechanobiologic influences in long bone cross-sectional growth
  publication-title: Bone
  doi: 10.1016/8756-3282(93)90085-O
– volume: 79
  start-page: 362
  year: 2004
  ident: 10.1016/j.jbiomech.2016.06.012_bib8
  article-title: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/79.3.362
– volume: 84
  start-page: 2261
  year: 2015
  ident: 10.1016/j.jbiomech.2016.06.012_bib15
  article-title: Homeostasis-based aging model for trabecular changes and its correlation with age-matched bone mineral densities and radiographs
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2015.07.027
– ident: 10.1016/j.jbiomech.2016.06.012_bib24
  doi: 10.1055/s-0028-1144106
SSID ssj0007479
Score 2.3256867
Snippet Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical...
Abstract Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3035
SubjectTerms Aged
Assessments
Bone and Bones - diagnostic imaging
Bone and Bones - physiology
Bone Density
Bone microstructure
Bone remodeling
Bones
Elastic Modulus
Female
Hip joint
Humans
Image enhancement
Image Enhancement - methods
Image reconstruction
Image resolution
Male
Mathematical models
Optimization
Osteoporosis
Physical Medicine and Rehabilitation
Preserves
Resolution enhancement
Signal-To-Noise Ratio
Simulation
Skeletal image
Studies
Topology
Topology optimization
Weight-Bearing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRA9INjyCBRkJMQtNHZiJz6hClEVpHKi0h6QrPgRoVU3W9itqv33zDhO6KUL4ryeOJsZz3yeJ8Bb64V0OohclFVN3iqLerDxObUW164MnY7TGs6-qtPz6stczpPDbZ3SKkedGBW1XznykR8hDqaYkJb1h8ufOU2NouhqGqFxF-5R6zJK6arn04WLesOnFA-eIwwoblQIL94vYn17DEhwFXt4cnGbcboNfEYjdPIIHib0yI4Hdj-GO6GfwcFxjzfn5Za9YzGfMzrKZ7B_o9XgDO6fpSD6AXz_vEQlwvCencSOhf4HMZ8chQxBLBuKI7fsOvpNc4unAR_CLPX1Z2T3PEOqzTBfYctWqHaWqZ7zCZyffPr28TRPQxZyJ2uxQW3IndbCF8LJ1hVdq32pvQ7aK1G50snCCRt43fiK4JlTtuJNV3YOkY5spSufwl6P2z8HVofgbChsq_GSUihtbVUr73yrWuW56DKQ49c1LnUgp0EYF2ZMNVuYkSuGuGIo546LDI4musuhB8dfKeqReWasMEWdaNBM_B9lWKejvTbcrIUpDEW5OQkVAlq0-EpmoCfKhF4GVPJPux6OEmb-bDRJfAZvpp_x9FNIp-3D6iquoQZ8vFE719SaHtbsWlNJwoZ1lcGzQcKnT00NkFBzqxe7X_IlPKB_FPPv1CHsbX5dhVcI2Db2dTyVvwG23z9Y
  priority: 102
  providerName: ProQuest
Title Image resolution enhancement for healthy weight-bearing bones based on topology optimization
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016306765
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016306765
https://dx.doi.org/10.1016/j.jbiomech.2016.06.012
https://www.ncbi.nlm.nih.gov/pubmed/27345106
https://www.proquest.com/docview/1828230957
https://www.proquest.com/docview/1826709186
https://www.proquest.com/docview/1827918288
https://www.proquest.com/docview/1845819074
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNDxERiTkRBvWWMntuPHMm3qQKsQYlIfkKz4o2IVzSbaCfWFv507x-mG0AaCl1ZNfXFin3_-nX13JuS19Vw4HXjOy0rhapUFHKx9jqnFtSvDTMfTGk4mcnxavZuK6RY56GNh0K0yYX-H6RGt05Vhas3hxdkZxvjCaMNtQIm0V2KgeVUp1PL9H1duHkCXk5sHy7H0tSjh-f48xrjHTQkmYx5Pxm-aoG4ioHEiOnpIHiQGSUfdQz4iW6EdkJ1RC9bzYk3f0OjTGRfLB-T-tXSDA3L3JG2k75DPxwsAEgq2dlI9GtovqAC4WEiByNIuQHJNv8e109zCiICbUIu5_SnOfZ6C1Ko7Y2FNzwF6Fimm8zE5PTr8dDDO00ELuROKrwARmdOa-4I70bhi1mhfaq-D9pJXrnSicNwGpmpfIUVz0lasnpUzB2xHNMKVT8h2C9U_I1SF4GwobKPBUCmktha6xDvfyEZ6xmcZEX3rGpeykONhGF9N7242N32vGOwVg353jGdkuJG76PJw_FFC9Z1n-ihTwEUDU8W_SYZlGt5Lw8ySm8L8poIZ0RvJX7T4r2rd7TXMXFUEBjEYiVqojLza_A0IgNs6TRvOL2MZTMLHanlrGaXxZvVtZSqB_FBVGXnaafimqTEJEqC3fP4fL_iC3MNf0UFP7pLt1bfL8BIY3cruxSELn2qq9sid0fH78QS-3x5OPnz8CaqCTdM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVOJxQJDyCBQwEnBbuutde-MDQgVaJbSJEGqlHpDM-rFCEUkKSVXlT_EbmfE-6KUBIfUcj72xxzPfeF4AL4zjwirPI55mOb1WGZSDfRdRaXFlU1-q0K1hNJaD4-zjiTjZgF9NLgyFVTYyMQhqN7f0Rr6DOJh8Qkrkb09_RNQ1iryrTQuNii0O_OocTbbFm-EHPN-XnO_vHb0fRHVXgciKnC_x-idWKe5ibkVh47JQLlVOeeUkz2xqRWy58UnedxnhEStNlvTLtLSo2kUhbIrzXoPNLEVTpgOb7_bGnz63sh_BeR1UkkQIPOILOcmT15OQUR9cIIkMVUMTfpk6vAzuBrW3fwdu13iV7VYMdhc2_KwLW7sztNWnK_aKhQjS8DTfhVsXiht24fqodttvwZfhFMUWQ8u-ZnTmZ9-I3ehpkiFsZlU65oqdh5fayOBG4yTMUCcBRprWMaRaVh0dVmyOgm5aZ5Deg-MrOYD70Jnh8g-B5d5b42NTKDSLYqmMyXLprCtkIV3Cyx6IZne1rWueU-uN77oJbpvo5lQ0nYqmKL-E92CnpTutqn78lSJvDk83Oa0ohTUqpv-j9ItamCx0ohdcx5r86gkxFUJoxBhS9EC1lDVeqnDQP6263XCY_rNQe8d68Lz9GeUNOZGKmZ-fhTFU8i_py7VjckWT9deNyQSh0TzrwYOKw9utppJLqCvko_Uf-QxuDI5Gh_pwOD54DDfp34XoP7kNneXPM_8E4eLSPK3vKIOvVy0WfgOnJn11
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJBCCRQwEnBbuvauvfEBoYoSNZRWHKiUA5JZP1YoIkkhqar8NX4dM94HvTQgpJ7jx8Yez3zzBnhhvZBOB5GILC_IWmWRDw58QqXFtctCpWO3huMTdXiafxjL8Qb8anNhKKyy5YmRUfu5Ixv5HuJg8glpVOCrJizi08Hw7dmPhDpIkae1badRk8hRWF2g-rZ4MzrAu34pxPD953eHSdNhIHGyEEtkBdxpLXwqnCxdWpXaZ9rroL0SucucTJ2wgRcDnxM2ccrmfFBllUMxL0vpMlz3BtwsMsnpjRXjTtmjuvRNeAlPEIKkl7KTJ68nMbc-OkO4ivVDubhKMF4FfKMAHN6FOw1yZfs1qd2DjTDrwfb-DLX26Yq9YjGWNBrpe3D7UpnDHmwdNw78bfgymiIDY6jjNyTPwuwbER4ZKRkCaFYnZq7YRbTZJhaPGRdhlnoKMJK5nuGsZd3bYcXmyPKmTS7pfTi9luN_AJsz3P4hsCIEZ0NqS40KUqq0tXmhvPOlKpXnouqDbE_XuKb6OTXh-G7aMLeJaW_F0K0Yivfjog973byzuv7HX2cU7eWZNrsV-bFBEfV_M8OiYSsLw81CmNSQh50TUSGYRrShZB90N7NBTjUi-qddd1sKM3826l5bH553PyPnIXdSOQvz8ziGiv_xgVo7ptC02GDdmFwSLi3yPuzUFN4dNRVfQqmhHq3_yGewhczAfBydHD2GW_TnYhig2oXN5c_z8ARx49I-jQ-Uwdfr5gi_AQ3ygEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+resolution+enhancement+for+healthy+weight-bearing+bones+based+on+topology+optimization&rft.jtitle=Journal+of+biomechanics&rft.au=Kim%2C+Jung+Jin&rft.au=Jang%2C+In+Gwun&rft.date=2016-09-06&rft.issn=0021-9290&rft.volume=49&rft.issue=13&rft.spage=3035&rft.epage=3040&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.06.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00139%2Fcov150h.gif