Image resolution enhancement for healthy weight-bearing bones based on topology optimization
Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement technique...
Saved in:
Published in | Journal of biomechanics Vol. 49; no. 13; pp. 3035 - 3040 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
06.09.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2016.06.012 |
Cover
Loading…
Abstract | Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement. |
---|---|
AbstractList | Abstract Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement. Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement. Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement. |
Author | Jang, In Gwun Kim, Jung Jin |
Author_xml | – sequence: 1 givenname: Jung Jin surname: Kim fullname: Kim, Jung Jin email: kjj4537@kaist.ac.kr – sequence: 2 givenname: In Gwun surname: Jang fullname: Jang, In Gwun email: igjang@kaist.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27345106$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6FcqAL77MepP5kwRELMVqoeCD-iaETObObtaZyZpklPXTN-O2CvtgFy4Jgd853Jtzz8jJ6EYk5ILCkgKtX2-Wm8a6Ac16ydJ7Cakoe0IWVPAiZ4WAE7IAYDSXTMIpOQthAwC85PIZOWW8KCsK9YJ8uxn0CjOPwfVTtG7McFzr0eCAY8w657M16j6ud9kvtKt1zBvU3o6rrEn9hKzRAdssqaLbut6tdpnbRjvY33r2ek6edroP-OL-Pidfr99_ufqY3376cHN1eZubirOYC06NlKwFZiptoNOyLWQrUbY1K01hKjCsQcpFWwKIytRNSUVXdKYQstKVKc7Jq73v1rsfE4aoBhsM9r0e0U1BUVFWgso0_REo4zIdQhyD1hwSXCf05QG6cZMf08wzJVgBsuKJurinpmbAVm29HbTfqYc0ElDvAeNdCB67vwgFNceuNuohdjXHriAVZUn45kBobPwTQfTa9o_L3-3lmEL6adGrYCymJWitRxNV6-zjFm8PLExvR2t0_x13GP59hwpMgfo8r-a8mbQuoOZ19X-DYzq4AxCA9jE |
CitedBy_id | crossref_primary_10_1155_2019_4102410 crossref_primary_10_1007_s10237_021_01473_1 crossref_primary_10_1109_JESTPE_2019_2902258 crossref_primary_10_7736_JKSPE_022_041 crossref_primary_10_1016_j_compbiomed_2024_108929 crossref_primary_10_1016_j_cmpb_2017_11_007 crossref_primary_10_3390_bioengineering9110644 crossref_primary_10_7736_JKSPE_022_068 crossref_primary_10_1016_j_ijnonlinmec_2023_104458 crossref_primary_10_1002_cnm_70015 crossref_primary_10_1007_s00158_022_03183_3 crossref_primary_10_1002_cnm_2950 crossref_primary_10_1016_j_cma_2024_117378 crossref_primary_10_3390_biology12020170 crossref_primary_10_1007_s00158_018_1970_y crossref_primary_10_1109_TIE_2022_3148751 crossref_primary_10_1002_cnm_3845 crossref_primary_10_1016_j_cmpb_2022_107054 crossref_primary_10_1109_JESTPE_2017_2688999 crossref_primary_10_1007_s10237_022_01662_6 crossref_primary_10_3390_app15052829 crossref_primary_10_1109_ACCESS_2022_3227388 crossref_primary_10_7736_JKSPE_023_054 crossref_primary_10_1016_j_eswa_2024_126299 crossref_primary_10_1016_j_jmbbm_2020_103805 |
Cites_doi | 10.1016/j.jbiomech.2005.10.027 10.1016/j.jbiomech.2008.05.037 10.1016/j.jbiomech.2008.12.009 10.1115/1.3005202 10.1007/BF01650949 10.1109/38.988747 10.1016/j.bone.2011.08.018 10.1002/jbmr.141 10.1016/j.jbiomech.2009.09.042 10.1016/j.clinbiomech.2013.12.019 10.1007/BF01673421 10.1109/TIT.2006.871582 10.1016/j.rcl.2010.02.015 10.3233/THC-1998-65-611 10.1002/jbmr.5650020617 10.1002/nme.1620240207 10.1016/0021-9290(94)90014-0 10.1016/S1350-4533(01)00045-5 10.1016/8756-3282(93)90085-O 10.1093/ajcn/79.3.362 10.1016/j.ejrad.2015.07.027 10.1055/s-0028-1144106 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO P64 |
DOI | 10.1016/j.jbiomech.2016.06.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Research Library Prep Technology Research Database Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 3040 |
ExternalDocumentID | 4213477671 27345106 10_1016_j_jbiomech_2016_06_012 S0021929016306765 1_s2_0_S0021929016306765 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO P64 |
ID | FETCH-LOGICAL-c572t-871c992d02c5ac0fa9d39d9e9d624c3c50c2be178d40085c6b418f3fc3895a5c3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Tue Aug 05 11:01:35 EDT 2025 Fri Jul 11 09:02:22 EDT 2025 Fri Jul 11 12:02:31 EDT 2025 Wed Aug 13 11:28:45 EDT 2025 Wed Feb 19 02:42:33 EST 2025 Tue Jul 01 01:14:11 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Feb 25 20:12:59 EST 2025 Tue Aug 26 17:10:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Topology optimization Resolution enhancement Bone microstructure Bone remodeling Skeletal image |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-871c992d02c5ac0fa9d39d9e9d624c3c50c2be178d40085c6b418f3fc3895a5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27345106 |
PQID | 1828230957 |
PQPubID | 1226346 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1845819074 proquest_miscellaneous_1827918288 proquest_miscellaneous_1826709186 proquest_journals_1828230957 pubmed_primary_27345106 crossref_primary_10_1016_j_jbiomech_2016_06_012 crossref_citationtrail_10_1016_j_jbiomech_2016_06_012 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_06_012 elsevier_clinicalkeyesjournals_1_s2_0_S0021929016306765 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_06_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-06 |
PublicationDateYYYYMMDD | 2016-09-06 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Jang, Kim (bib10) 2009; 42 Bendsøe (bib1) 1989; 1 Jang, Kim (bib11) 2010; 43 Jang, Kim, Kwak (bib12) 2009; 131 Freeman, Jones, Pasztor (bib5) 2002; 22 Krug, Burghardt, Majumdar, Link (bib14) 2010; 48 Goldstein, Goulet, McCubbrey (bib6) 1993; 53 Levchuk, Zwahlen, Weigt, Lambers, Badilatti, Schulte, Kuhn, Müller (bib16) 2014; 29 Parfitt, Drezner, Glorieux, Kanis, Malluche, Meunier, Ott, Recker (bib17) 1987; 2 Wolff, J., 1892. Das Gesetz der Transformation der Knochen. Hirchwild, Berlin. Donoho (bib4) 2006; 52 Lee, Kim, Kim, Jang (bib15) 2015; 84 Burr, Akkus (bib3) 2014 Shrimpton, Hillier, Lewis, Dunn (bib20) 2005 Verhulp, van Rietbergen, Huiskes (bib23) 2006; 39 Peyrin, Salome, Cloetens, Laval-Jeantet, Ritman, Rüegsegger (bib18) 1998; 6 Bouxsein, Boyd, Christiansen, Guldberg, Jepsen, Müller (bib2) 2010; 25 Svanberg (bib21) 1987; 24 Keyak (bib13) 2001; 23 Jang, Kim (bib9) 2008; 41 Holick (bib8) 2004; 79 Schulte, Lambers, Webster, Kuhn, Müller (bib19) 2011; 49 Goulet, Goldstein, Ciarelli, Kuhn, Brown, Feldkamp (bib7) 1994; 27 van Der Meulen, Beaupré, Carter (bib22) 1993; 14 Jang (10.1016/j.jbiomech.2016.06.012_bib11) 2010; 43 Keyak (10.1016/j.jbiomech.2016.06.012_bib13) 2001; 23 Jang (10.1016/j.jbiomech.2016.06.012_bib9) 2008; 41 Parfitt (10.1016/j.jbiomech.2016.06.012_bib17) 1987; 2 Jang (10.1016/j.jbiomech.2016.06.012_bib10) 2009; 42 Krug (10.1016/j.jbiomech.2016.06.012_bib14) 2010; 48 Levchuk (10.1016/j.jbiomech.2016.06.012_bib16) 2014; 29 Peyrin (10.1016/j.jbiomech.2016.06.012_bib18) 1998; 6 Goldstein (10.1016/j.jbiomech.2016.06.012_bib6) 1993; 53 Bouxsein (10.1016/j.jbiomech.2016.06.012_bib2) 2010; 25 Burr (10.1016/j.jbiomech.2016.06.012_bib3) 2014 Shrimpton (10.1016/j.jbiomech.2016.06.012_bib20) 2005 10.1016/j.jbiomech.2016.06.012_bib24 Bendsøe (10.1016/j.jbiomech.2016.06.012_bib1) 1989; 1 Goulet (10.1016/j.jbiomech.2016.06.012_bib7) 1994; 27 Donoho (10.1016/j.jbiomech.2016.06.012_bib4) 2006; 52 van Der Meulen (10.1016/j.jbiomech.2016.06.012_bib22) 1993; 14 Lee (10.1016/j.jbiomech.2016.06.012_bib15) 2015; 84 Schulte (10.1016/j.jbiomech.2016.06.012_bib19) 2011; 49 Svanberg (10.1016/j.jbiomech.2016.06.012_bib21) 1987; 24 Verhulp (10.1016/j.jbiomech.2016.06.012_bib23) 2006; 39 Freeman (10.1016/j.jbiomech.2016.06.012_bib5) 2002; 22 Holick (10.1016/j.jbiomech.2016.06.012_bib8) 2004; 79 Jang (10.1016/j.jbiomech.2016.06.012_bib12) 2009; 131 |
References_xml | – volume: 79 start-page: 362 year: 2004 end-page: 371 ident: bib8 article-title: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis publication-title: Am. J. Clin. Nutr. – volume: 23 start-page: 165 year: 2001 end-page: 173 ident: bib13 article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models publication-title: Med. Eng. Phys. – volume: 84 start-page: 2261 year: 2015 end-page: 2268 ident: bib15 article-title: Homeostasis-based aging model for trabecular changes and its correlation with age-matched bone mineral densities and radiographs publication-title: Eur. J. Radiol. – volume: 49 start-page: 1166 year: 2011 end-page: 1172 ident: bib19 article-title: In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography publication-title: Bone – volume: 43 start-page: 492 year: 2010 end-page: 499 ident: bib11 article-title: Computational study on the effect of loading alteration caused by disc degeneration on the trabecular architecture in human lumbar spine publication-title: J. Biomech. – volume: 29 start-page: 355 year: 2014 end-page: 362 ident: bib16 article-title: The clinical biomechanics award 2012 – Presented by the European Society of biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment publication-title: Clin. Biomech. – year: 2005 ident: bib20 article-title: Doses from Computed Tomography (CT) Examinations in the UK – 2003 Review – volume: 14 start-page: 635 year: 1993 end-page: 642 ident: bib22 article-title: Mechanobiologic influences in long bone cross-sectional growth publication-title: Bone – reference: Wolff, J., 1892. Das Gesetz der Transformation der Knochen. Hirchwild, Berlin. – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: bib1 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. – volume: 42 start-page: 573 year: 2009 end-page: 580 ident: bib10 article-title: Computational simulation of trabecular adaptation progress in human proximal femur during growth publication-title: J. Biomech. – volume: 48 start-page: 601 year: 2010 end-page: 621 ident: bib14 article-title: High-Resolution imaging techniques for the assessment of osteoporosis publication-title: Radiol. Clin. North Am. – volume: 27 start-page: 375 year: 1994 end-page: 389 ident: bib7 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: bib21 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int. J. Numer. Methods Eng. – volume: 22 start-page: 56 year: 2002 end-page: 65 ident: bib5 article-title: Example-based super-resolution publication-title: IEEE Comput. Graph. Appl. – volume: 2 start-page: 595 year: 1987 end-page: 610 ident: bib17 article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee publication-title: J. Bone Miner. Res. – volume: 25 start-page: 1468 year: 2010 end-page: 1486 ident: bib2 article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography publication-title: J. Bone Miner. Res. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: bib4 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 6 start-page: 391 year: 1998 end-page: 401 ident: bib18 article-title: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 publication-title: Technol. Health Care – volume: 53 start-page: 127 year: 1993 end-page: 133 ident: bib6 article-title: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone publication-title: Calcif. Tissue Int. – volume: 131 start-page: 011012 year: 2009 ident: bib12 article-title: Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization publication-title: J. Biomech. Eng. – volume: 39 start-page: 2951 year: 2006 end-page: 2957 ident: bib23 article-title: Comparison of micro-level and continuum-level voxel models of the proximal femur publication-title: J. Biomech. – year: 2014 ident: bib3 article-title: Basic and Applied Bone Biology – volume: 41 start-page: 2353 year: 2008 end-page: 2361 ident: bib9 article-title: Computational study of Wolff׳s law with trabecular architecture in the human proximal femur using topology optimization publication-title: J. Biomech. – year: 2014 ident: 10.1016/j.jbiomech.2016.06.012_bib3 – volume: 39 start-page: 2951 year: 2006 ident: 10.1016/j.jbiomech.2016.06.012_bib23 article-title: Comparison of micro-level and continuum-level voxel models of the proximal femur publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.10.027 – year: 2005 ident: 10.1016/j.jbiomech.2016.06.012_bib20 – volume: 41 start-page: 2353 year: 2008 ident: 10.1016/j.jbiomech.2016.06.012_bib9 article-title: Computational study of Wolff׳s law with trabecular architecture in the human proximal femur using topology optimization publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.05.037 – volume: 42 start-page: 573 year: 2009 ident: 10.1016/j.jbiomech.2016.06.012_bib10 article-title: Computational simulation of trabecular adaptation progress in human proximal femur during growth publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.12.009 – volume: 131 start-page: 011012 year: 2009 ident: 10.1016/j.jbiomech.2016.06.012_bib12 article-title: Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization publication-title: J. Biomech. Eng. doi: 10.1115/1.3005202 – volume: 1 start-page: 193 year: 1989 ident: 10.1016/j.jbiomech.2016.06.012_bib1 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 22 start-page: 56 year: 2002 ident: 10.1016/j.jbiomech.2016.06.012_bib5 article-title: Example-based super-resolution publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.988747 – volume: 49 start-page: 1166 year: 2011 ident: 10.1016/j.jbiomech.2016.06.012_bib19 article-title: In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography publication-title: Bone doi: 10.1016/j.bone.2011.08.018 – volume: 25 start-page: 1468 year: 2010 ident: 10.1016/j.jbiomech.2016.06.012_bib2 article-title: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.141 – volume: 43 start-page: 492 year: 2010 ident: 10.1016/j.jbiomech.2016.06.012_bib11 article-title: Computational study on the effect of loading alteration caused by disc degeneration on the trabecular architecture in human lumbar spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.042 – volume: 29 start-page: 355 year: 2014 ident: 10.1016/j.jbiomech.2016.06.012_bib16 article-title: The clinical biomechanics award 2012 – Presented by the European Society of biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2013.12.019 – volume: 53 start-page: 127 year: 1993 ident: 10.1016/j.jbiomech.2016.06.012_bib6 article-title: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone publication-title: Calcif. Tissue Int. doi: 10.1007/BF01673421 – volume: 52 start-page: 1289 year: 2006 ident: 10.1016/j.jbiomech.2016.06.012_bib4 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 48 start-page: 601 year: 2010 ident: 10.1016/j.jbiomech.2016.06.012_bib14 article-title: High-Resolution imaging techniques for the assessment of osteoporosis publication-title: Radiol. Clin. North Am. doi: 10.1016/j.rcl.2010.02.015 – volume: 6 start-page: 391 year: 1998 ident: 10.1016/j.jbiomech.2016.06.012_bib18 article-title: Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2μm level publication-title: Technol. Health Care doi: 10.3233/THC-1998-65-611 – volume: 2 start-page: 595 year: 1987 ident: 10.1016/j.jbiomech.2016.06.012_bib17 article-title: Bone histomorphometry: standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650020617 – volume: 24 start-page: 359 year: 1987 ident: 10.1016/j.jbiomech.2016.06.012_bib21 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620240207 – volume: 27 start-page: 375 year: 1994 ident: 10.1016/j.jbiomech.2016.06.012_bib7 article-title: The relationship between the structural and orthogonal compressive properties of trabecular bone publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90014-0 – volume: 23 start-page: 165 year: 2001 ident: 10.1016/j.jbiomech.2016.06.012_bib13 article-title: Improved prediction of proximal femoral fracture load using nonlinear finite element models publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(01)00045-5 – volume: 14 start-page: 635 year: 1993 ident: 10.1016/j.jbiomech.2016.06.012_bib22 article-title: Mechanobiologic influences in long bone cross-sectional growth publication-title: Bone doi: 10.1016/8756-3282(93)90085-O – volume: 79 start-page: 362 year: 2004 ident: 10.1016/j.jbiomech.2016.06.012_bib8 article-title: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/79.3.362 – volume: 84 start-page: 2261 year: 2015 ident: 10.1016/j.jbiomech.2016.06.012_bib15 article-title: Homeostasis-based aging model for trabecular changes and its correlation with age-matched bone mineral densities and radiographs publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2015.07.027 – ident: 10.1016/j.jbiomech.2016.06.012_bib24 doi: 10.1055/s-0028-1144106 |
SSID | ssj0007479 |
Score | 2.3256867 |
Snippet | Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical... Abstract Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3035 |
SubjectTerms | Aged Assessments Bone and Bones - diagnostic imaging Bone and Bones - physiology Bone Density Bone microstructure Bone remodeling Bones Elastic Modulus Female Hip joint Humans Image enhancement Image Enhancement - methods Image reconstruction Image resolution Male Mathematical models Optimization Osteoporosis Physical Medicine and Rehabilitation Preserves Resolution enhancement Signal-To-Noise Ratio Simulation Skeletal image Studies Topology Topology optimization Weight-Bearing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRA9INjyCBRkJMQtNHZiJz6hClEVpHKi0h6QrPgRoVU3W9itqv33zDhO6KUL4ryeOJsZz3yeJ8Bb64V0OohclFVN3iqLerDxObUW164MnY7TGs6-qtPz6stczpPDbZ3SKkedGBW1XznykR8hDqaYkJb1h8ufOU2NouhqGqFxF-5R6zJK6arn04WLesOnFA-eIwwoblQIL94vYn17DEhwFXt4cnGbcboNfEYjdPIIHib0yI4Hdj-GO6GfwcFxjzfn5Za9YzGfMzrKZ7B_o9XgDO6fpSD6AXz_vEQlwvCencSOhf4HMZ8chQxBLBuKI7fsOvpNc4unAR_CLPX1Z2T3PEOqzTBfYctWqHaWqZ7zCZyffPr28TRPQxZyJ2uxQW3IndbCF8LJ1hVdq32pvQ7aK1G50snCCRt43fiK4JlTtuJNV3YOkY5spSufwl6P2z8HVofgbChsq_GSUihtbVUr73yrWuW56DKQ49c1LnUgp0EYF2ZMNVuYkSuGuGIo546LDI4musuhB8dfKeqReWasMEWdaNBM_B9lWKejvTbcrIUpDEW5OQkVAlq0-EpmoCfKhF4GVPJPux6OEmb-bDRJfAZvpp_x9FNIp-3D6iquoQZ8vFE719SaHtbsWlNJwoZ1lcGzQcKnT00NkFBzqxe7X_IlPKB_FPPv1CHsbX5dhVcI2Db2dTyVvwG23z9Y priority: 102 providerName: ProQuest |
Title | Image resolution enhancement for healthy weight-bearing bones based on topology optimization |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016306765 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016306765 https://dx.doi.org/10.1016/j.jbiomech.2016.06.012 https://www.ncbi.nlm.nih.gov/pubmed/27345106 https://www.proquest.com/docview/1828230957 https://www.proquest.com/docview/1826709186 https://www.proquest.com/docview/1827918288 https://www.proquest.com/docview/1845819074 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNDxERiTkRBvWWMntuPHMm3qQKsQYlIfkKz4o2IVzSbaCfWFv507x-mG0AaCl1ZNfXFin3_-nX13JuS19Vw4HXjOy0rhapUFHKx9jqnFtSvDTMfTGk4mcnxavZuK6RY56GNh0K0yYX-H6RGt05Vhas3hxdkZxvjCaMNtQIm0V2KgeVUp1PL9H1duHkCXk5sHy7H0tSjh-f48xrjHTQkmYx5Pxm-aoG4ioHEiOnpIHiQGSUfdQz4iW6EdkJ1RC9bzYk3f0OjTGRfLB-T-tXSDA3L3JG2k75DPxwsAEgq2dlI9GtovqAC4WEiByNIuQHJNv8e109zCiICbUIu5_SnOfZ6C1Ko7Y2FNzwF6Fimm8zE5PTr8dDDO00ELuROKrwARmdOa-4I70bhi1mhfaq-D9pJXrnSicNwGpmpfIUVz0lasnpUzB2xHNMKVT8h2C9U_I1SF4GwobKPBUCmktha6xDvfyEZ6xmcZEX3rGpeykONhGF9N7242N32vGOwVg353jGdkuJG76PJw_FFC9Z1n-ihTwEUDU8W_SYZlGt5Lw8ySm8L8poIZ0RvJX7T4r2rd7TXMXFUEBjEYiVqojLza_A0IgNs6TRvOL2MZTMLHanlrGaXxZvVtZSqB_FBVGXnaafimqTEJEqC3fP4fL_iC3MNf0UFP7pLt1bfL8BIY3cruxSELn2qq9sid0fH78QS-3x5OPnz8CaqCTdM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVOJxQJDyCBQwEnBbuutde-MDQgVaJbSJEGqlHpDM-rFCEUkKSVXlT_EbmfE-6KUBIfUcj72xxzPfeF4AL4zjwirPI55mOb1WGZSDfRdRaXFlU1-q0K1hNJaD4-zjiTjZgF9NLgyFVTYyMQhqN7f0Rr6DOJh8Qkrkb09_RNQ1iryrTQuNii0O_OocTbbFm-EHPN-XnO_vHb0fRHVXgciKnC_x-idWKe5ibkVh47JQLlVOeeUkz2xqRWy58UnedxnhEStNlvTLtLSo2kUhbIrzXoPNLEVTpgOb7_bGnz63sh_BeR1UkkQIPOILOcmT15OQUR9cIIkMVUMTfpk6vAzuBrW3fwdu13iV7VYMdhc2_KwLW7sztNWnK_aKhQjS8DTfhVsXiht24fqodttvwZfhFMUWQ8u-ZnTmZ9-I3ehpkiFsZlU65oqdh5fayOBG4yTMUCcBRprWMaRaVh0dVmyOgm5aZ5Deg-MrOYD70Jnh8g-B5d5b42NTKDSLYqmMyXLprCtkIV3Cyx6IZne1rWueU-uN77oJbpvo5lQ0nYqmKL-E92CnpTutqn78lSJvDk83Oa0ohTUqpv-j9ItamCx0ohdcx5r86gkxFUJoxBhS9EC1lDVeqnDQP6263XCY_rNQe8d68Lz9GeUNOZGKmZ-fhTFU8i_py7VjckWT9deNyQSh0TzrwYOKw9utppJLqCvko_Uf-QxuDI5Gh_pwOD54DDfp34XoP7kNneXPM_8E4eLSPK3vKIOvVy0WfgOnJn11 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJBCCRQwEnBbuvauvfEBoYoSNZRWHKiUA5JZP1YoIkkhqar8NX4dM94HvTQgpJ7jx8Yez3zzBnhhvZBOB5GILC_IWmWRDw58QqXFtctCpWO3huMTdXiafxjL8Qb8anNhKKyy5YmRUfu5Ixv5HuJg8glpVOCrJizi08Hw7dmPhDpIkae1badRk8hRWF2g-rZ4MzrAu34pxPD953eHSdNhIHGyEEtkBdxpLXwqnCxdWpXaZ9rroL0SucucTJ2wgRcDnxM2ccrmfFBllUMxL0vpMlz3BtwsMsnpjRXjTtmjuvRNeAlPEIKkl7KTJ68nMbc-OkO4ivVDubhKMF4FfKMAHN6FOw1yZfs1qd2DjTDrwfb-DLX26Yq9YjGWNBrpe3D7UpnDHmwdNw78bfgymiIDY6jjNyTPwuwbER4ZKRkCaFYnZq7YRbTZJhaPGRdhlnoKMJK5nuGsZd3bYcXmyPKmTS7pfTi9luN_AJsz3P4hsCIEZ0NqS40KUqq0tXmhvPOlKpXnouqDbE_XuKb6OTXh-G7aMLeJaW_F0K0Yivfjog973byzuv7HX2cU7eWZNrsV-bFBEfV_M8OiYSsLw81CmNSQh50TUSGYRrShZB90N7NBTjUi-qddd1sKM3826l5bH553PyPnIXdSOQvz8ziGiv_xgVo7ptC02GDdmFwSLi3yPuzUFN4dNRVfQqmhHq3_yGewhczAfBydHD2GW_TnYhig2oXN5c_z8ARx49I-jQ-Uwdfr5gi_AQ3ygEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+resolution+enhancement+for+healthy+weight-bearing+bones+based+on+topology+optimization&rft.jtitle=Journal+of+biomechanics&rft.au=Kim%2C+Jung+Jin&rft.au=Jang%2C+In+Gwun&rft.date=2016-09-06&rft.issn=0021-9290&rft.volume=49&rft.issue=13&rft.spage=3035&rft.epage=3040&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.06.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00139%2Fcov150h.gif |