Image resolution enhancement for healthy weight-bearing bones based on topology optimization

Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement technique...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 49; no. 13; pp. 3035 - 3040
Main Authors Kim, Jung Jin, Jang, In Gwun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 06.09.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2016.06.012