Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates
This paper presents a theoretical and finite element (FE) investigation of the scattering characteristics of the fundamental anti-symmetric (A0) Lamb wave at delaminations in a quasi-isotropic (QI) composite laminate. Analytical models based on the Mindlin plate theory and Born approximation are pre...
Saved in:
Published in | Journal of sound and vibration Vol. 331; no. 22; pp. 4870 - 4883 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
22.10.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a theoretical and finite element (FE) investigation of the scattering characteristics of the fundamental anti-symmetric (A0) Lamb wave at delaminations in a quasi-isotropic (QI) composite laminate. Analytical models based on the Mindlin plate theory and Born approximation are presented to predict the A0 Lamb wave scattering at a delamination, which is modelled as an inhomogeneity, in an equivalent isotropic model of the QI composite laminate. The results are compared with FE predictions, in which the delamination is modelled as a volume split. The equivalent isotropic model and QI composite laminate are used to investigate the feasibility of the common theoretical approach of modelling the delamination as the inhomogeneity. A good correlation is observed between the theoretical solutions and FE results in the forward scattering amplitudes, but there exists a larger discrepancy in the backward scattering amplitudes. The FE results also show that the fibre direction of the outer laminae has a pronounced influence on the forward and backward scattering amplitudes, which is not predicted by the analytical models. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2012.06.002 |