Altered bile acid kinetics contribute to postprandial hypoglycaemia after Roux-en-Y gastric bypass surgery
Background/objectives Bile acids (BA) act as detergents in intestinal fat absorption and as modulators of metabolic processes via activation of receptors such as FXR and TGR5. Elevated plasma BA as well as increased intestinal BA signalling to promote GLP-1 release have been implicated in beneficial...
Saved in:
Published in | International Journal of Obesity Vol. 45; no. 3; pp. 619 - 630 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background/objectives
Bile acids (BA) act as detergents in intestinal fat absorption and as modulators of metabolic processes
via
activation of receptors such as FXR and TGR5. Elevated plasma BA as well as increased intestinal BA signalling to promote GLP-1 release have been implicated in beneficial health effects of Roux-en-Y gastric bypass surgery (RYGB). Whether BA also contribute to the postprandial hypoglycaemia that is frequently observed post-RYGB is unknown.
Methods
Plasma BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4), GLP-1, insulin and glucose levels were determined during 3.5 h mixed-meal tolerance tests (MMTT) in subjects after RYGB, either with (RYGB,
n
= 11) or without a functioning gallbladder due to cholecystectomy (RYGB-CC,
n
= 11). Basal values were compared to those of age, BMI and sex-matched obese controls without RYGB (
n
= 22).
Results
Fasting BA as well as FGF19 levels were elevated in RYGB and RYGB-CC subjects compared to non-bariatric controls, without significant differences between RYGB and RYGB-CC. Postprandial hypoglycaemia was observed in 8/11 RYGB-CC and only in 3/11 RYGB. Subjects who developed hypoglycaemia showed higher postprandial BA levels coinciding with augmented GLP-1 and insulin responses during the MMTT. The nadir of plasma glucose concentrations after meals showed a negative relationship with postprandial BA peaks. Plasma C4 was lower during MMTT in subjects experiencing hypoglycaemia, indicating lower hepatic BA synthesis. Computer simulations revealed that altered intestinal transit underlies the occurrence of exaggerated postprandial BA responses in hypoglycaemic subjects.
Conclusion
Altered BA kinetics upon ingestion of a meal, as frequently observed in RYGB-CC subjects, appear to contribute to postprandial hypoglycaemia by stimulating intestinal GLP-1 release. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0307-0565 1476-5497 |
DOI: | 10.1038/s41366-020-00726-w |