Insulating gate III-N heterostructure field-effect transistors for high-power microwave and switching applications

Describes the properties of novel III-N-based insulating gate heterostructure field-effect transistors (HFETs). For the gate isolation, these devices use either SiO/sub 2/ layer (in metal-oxide-semiconductor HFET (MOSHFET) structures) or Si/sub 3/N/sub 4/ layer (in metal-insulator-semiconductor HFET...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 51; no. 2; pp. 624 - 633
Main Authors Khan, M.A., Simin, G., Jinwei Yang, Jianping Zhang, Koudymov, A., Shur, M.S., Gaska, R., Xuhong Hu, Tarakji, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Describes the properties of novel III-N-based insulating gate heterostructure field-effect transistors (HFETs). For the gate isolation, these devices use either SiO/sub 2/ layer (in metal-oxide-semiconductor HFET (MOSHFET) structures) or Si/sub 3/N/sub 4/ layer (in metal-insulator-semiconductor HFET structures). These insulating gate HFETs have the gate-leakage currents 4-6 orders of magnitude lower than HFETs, even at elevated temperatures up to 300/spl deg/C. A double-heterostructure MOSHFET with SiO/sub 2/ gate isolation exhibits current collapse-free performance with extremely low gate-leakage current. Insulating gate devices, including large periphery multigate structures, demonstrate high-power stable operation and might find applications in high-performance power amplifiers and microwave and high-power switches with operating temperatures up to 300/spl deg/C or even higher.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2002.807681