Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replicat...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 7; no. FEB; p. 184
Main Authors Garcia-Garcia, Transito, Poncet, Sandrine, Derouiche, Abderahmane, Shi, Lei, Mijakovic, Ivan, Noirot-Gros, Marie-Françoise
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media 16.02.2016
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Reviewed by: Wiep Klaas Smits, Leiden University Medical Center, Netherlands; Susan Schlimpert, John Innes Centre, UK
Present Address: Marie-Françoise Noirot-Gros, Biosciences Division, Argonne National Laboratory, Lemont, USA
This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology
Edited by: Marc Bramkamp, Ludwig Maximilian University of Munich, Germany
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2016.00184