Variable escape from X-chromosome inactivation: Identifying factors that tip the scales towards expression

In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in express...

Full description

Saved in:
Bibliographic Details
Published inBioEssays Vol. 36; no. 8; pp. 746 - 756
Main Authors Peeters, Samantha B., Cotton, Allison M., Brown, Carolyn J.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three‐dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. Incomplete transcriptional silencing of X‐chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome.
AbstractList In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three‐dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. Incomplete transcriptional silencing of X‐chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome.
In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. Incomplete transcriptional silencing of X-chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome.
In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. [PUBLICATION ABSTRACT]
Author Peeters, Samantha B.
Brown, Carolyn J.
Cotton, Allison M.
Author_xml – sequence: 1
  givenname: Samantha B.
  surname: Peeters
  fullname: Peeters, Samantha B.
  organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada
– sequence: 2
  givenname: Allison M.
  surname: Cotton
  fullname: Cotton, Allison M.
  organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada
– sequence: 3
  givenname: Carolyn J.
  surname: Brown
  fullname: Brown, Carolyn J.
  email: Carolyn J. Brown, cbrown@mail.ubc.ca
  organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24913292$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFK0cUiQuXLPb4IwkHpFJ120UVHPi8WY4z6XrJxsHOtt1_j9stq1IJwWlsz_O-HnvmgOz1vkdCnjM6ZZTC69phnAJlglLK4RGZMAksZ2VR7pEJBSXzCkSxTw5iXCakUiCekH0QFeNQwYQsv5rgTN1hhtGaAbM2-FX2PbeLFH30K8xcb-zoLs3ofP8mmzfYj67duP4ia1PCh5iNCzNmoxvSArNk02E681cmNDHD6yFgjEn7lDxuTRfx2V08JF9mJ5-Pz_Lzj6fz46Pz3MoCILe0LHgreVk3AiRDtIW1UDSlQZb2QjKJVWlrhLqtra2hME3DUKoapIJS8UPydus7rOsVNjbVG0ynh-BWJmy0N07_mendQl_4Sy2Y4JUqksGrO4Pgf64xjnrlosWuMz36ddRMKlVy4Kz6D1QUUoBiMqEvH6BLvw59-olESc6EKgUk6sX94ndV_-5YAqZbwAYfY8B2hzCqb0ZC34yE3o1EEogHAuvG22amx7vu77JqK7tyHW7-cYl-Nz_5dF-bb7Uujni905rwQ6fvLaT-9uFUV7OyYoK91zP-Cx8h27M
CODEN BIOEEJ
CitedBy_id crossref_primary_10_1016_j_tins_2023_09_007
crossref_primary_10_1073_pnas_1520113113
crossref_primary_10_1093_hmg_ddu564
crossref_primary_10_1186_s13293_023_00544_5
crossref_primary_10_1002_evan_21424
crossref_primary_10_3390_genes13050827
crossref_primary_10_1007_s12035_020_01981_8
crossref_primary_10_3390_biom13030543
crossref_primary_10_1038_s41598_018_23063_5
crossref_primary_10_1016_j_semcdb_2016_01_024
crossref_primary_10_1007_s13770_017_0096_4
crossref_primary_10_1038_s41467_022_32273_5
crossref_primary_10_1186_s13072_021_00428_1
crossref_primary_10_1098_rstb_2016_0355
crossref_primary_10_1007_s00018_021_03945_0
crossref_primary_10_1016_j_esmoop_2023_101204
crossref_primary_10_1186_s12863_021_00978_z
crossref_primary_10_1186_s12864_019_5507_6
crossref_primary_10_3389_fgene_2018_00025
crossref_primary_10_1016_j_placenta_2018_03_005
crossref_primary_10_1038_s41467_018_05714_3
crossref_primary_10_3390_ijms232012288
crossref_primary_10_1016_j_jpsychires_2015_06_021
crossref_primary_10_1016_j_semcdb_2016_04_007
crossref_primary_10_1038_s41467_022_30961_w
crossref_primary_10_1016_j_ajhg_2015_12_015
crossref_primary_10_1038_srep45460
crossref_primary_10_1002_bies_202200105
crossref_primary_10_1155_2016_3181676
crossref_primary_10_1002_bies_201800073
crossref_primary_10_1016_j_biochi_2017_12_008
crossref_primary_10_1016_j_xgen_2024_100628
crossref_primary_10_1016_j_tibs_2015_12_003
crossref_primary_10_1016_j_pneurobio_2022_102353
crossref_primary_10_1038_s41568_021_00348_y
crossref_primary_10_1242_dev_200864
crossref_primary_10_1007_s00702_021_02403_2
crossref_primary_10_1038_s41598_018_28356_3
crossref_primary_10_1038_s41574_022_00697_0
crossref_primary_10_1186_s13293_017_0157_3
crossref_primary_10_1007_s00281_022_00969_x
crossref_primary_10_3390_jpm12020175
crossref_primary_10_1016_j_cell_2015_11_035
crossref_primary_10_1186_s12974_021_02120_3
crossref_primary_10_1007_s12041_015_0566_1
crossref_primary_10_15252_embj_2021109457
crossref_primary_10_1038_srep37324
crossref_primary_10_1186_s13059_016_1136_4
crossref_primary_10_3389_fimmu_2021_756262
crossref_primary_10_1186_s13293_018_0213_7
crossref_primary_10_1371_journal_pgen_1006890
crossref_primary_10_1016_j_ejmg_2018_06_010
crossref_primary_10_1038_nature18589
crossref_primary_10_1080_09513590_2020_1865907
crossref_primary_10_1016_j_ceb_2017_01_007
crossref_primary_10_1016_j_ejmg_2022_104496
crossref_primary_10_1016_j_jaut_2023_102992
crossref_primary_10_1093_molehr_gaab001
crossref_primary_10_2174_2589977512666200220122650
crossref_primary_10_1111_odi_12825
crossref_primary_10_1186_s10020_020_00256_1
crossref_primary_10_1186_s12859_022_04721_y
crossref_primary_10_1038_nrg_2015_2
crossref_primary_10_1016_j_tem_2023_07_003
crossref_primary_10_1038_s41467_019_13266_3
crossref_primary_10_1161_STROKEAHA_122_039138
crossref_primary_10_1515_revneuro_2023_0108
crossref_primary_10_1371_journal_pgen_1007692
crossref_primary_10_1242_dev_166462
crossref_primary_10_1016_j_semcdb_2016_04_013
crossref_primary_10_1007_s10048_020_00616_3
Cites_doi 10.1038/nature08161
10.1073/pnas.1216449110
10.1073/pnas.0807765105
10.1038/nrg3035
10.1126/science.1084274
10.1093/nar/29.13.2699
10.1038/349038a0
10.1159/000014969
10.1073/pnas.85.15.5605
10.1007/s00335-011-9350-6
10.1007/s004120100158
10.1371/journal.pcbi.0020113
10.1093/hmg/5.3.391
10.1159/000130315
10.1002/jcb.10429
10.1101/gad.380906
10.1016/j.devcel.2004.10.005
10.1016/j.cell.2010.04.042
10.1016/j.molcel.2013.02.011
10.1038/368154a0
10.1016/0092-8674(93)90419-Q
10.1016/S0960-9822(00)00832-0
10.1002/dvg.1020150609
10.1038/nature12719
10.1128/MCB.00997-08
10.1073/pnas.1116763109
10.1038/nsmb.2532
10.1086/341605
10.1083/jcb.153.4.773
10.1073/pnas.87.11.4174
10.1093/hmg/5.9.1345
10.1371/journal.pgen.1003952
10.1016/j.molcel.2014.01.002
10.1159/000207514
10.1038/nature12394
10.1007/s00439-002-0676-8
10.1073/pnas.77.11.6759
10.1073/pnas.81.9.2806
10.1016/j.devcel.2004.10.018
10.1093/hmg/ddp299
10.1073/pnas.1312951111
10.1093/hmg/ddt513
10.1073/pnas.97.12.6634
10.1038/163676a0
10.1101/gr.108563.110
10.1016/j.cell.2011.06.026
10.1101/gad.11.2.156
10.1101/gr.158436.113
10.1002/stem.1557
10.1101/gad.633311
10.1038/ng0398-212
10.1086/507565
10.1038/ng1705
10.1002/bies.201300040
10.1038/nature11082
10.1159/000071576
10.1093/nar/gkp860
10.1007/s00412-011-0343-8
10.1101/gr.103200.109
10.1016/j.cell.2007.03.036
10.1101/gr.161828.113
10.1126/science.1237973
10.1038/nature03440
10.1074/jbc.C400493200
10.1038/ng789
10.1038/29522
10.1007/BF00291539
10.1038/ng787
10.1016/S1097-2765(00)80248-8
10.1038/nature03479
10.1126/science.6164095
10.1186/gb-2010-11-6-213
10.1371/journal.pone.0031751
10.1093/molbev/mst148
10.1093/hmg/ddg229
10.1038/ng.2530
10.4161/epi.2.2.4612
10.1016/S0960-9822(02)00660-7
10.1038/ng1598
10.1038/ng.142
10.1016/j.ceb.2013.03.001
10.1101/gr.133751.111
10.1016/j.cell.2012.10.037
10.1186/gb-2013-14-11-r122
10.1038/379131a0
10.1126/science.286.5441.964
10.1016/S0092-8674(01)00598-0
10.1006/dbio.1996.0333
10.1073/pnas.48.5.756
10.1038/nature11049
10.1101/gr.092643.109
10.1016/j.neuron.2013.10.051
10.1093/hmg/ddr315
10.1534/genetics.112.143743
10.1038/31275
10.1146/annurev.ge.17.120183.001103
10.1016/j.cell.2010.04.010
10.1038/7734
10.1038/nature11171
10.1007/s00439-011-1007-8
10.1007/s00412-004-0325-1
10.1017/S0016672300027531
10.1093/hmg/ddt553
10.1126/science.1163045
10.1006/geno.1999.5861
10.1093/hmg/11.25.3157
10.1007/s00439-011-0994-9
10.1101/gr.161919.113
10.1073/pnas.0601069103
10.1371/journal.pbio.0020171
10.1016/j.devcel.2012.06.011
10.1128/MCB.02258-05
10.1016/j.cell.2011.12.029
10.1038/11887
10.1101/gr.112680.110
10.1083/jcb.132.3.259
10.1093/nar/12.24.9333
10.1073/pnas.96.13.7364
10.1073/pnas.96.12.6841
10.1073/pnas.0408021101
10.1016/j.cell.2014.01.042
ContentType Journal Article
Copyright 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.
2014 WILEY Periodicals, Inc.
2014 The Authors. Bioessays published by WILEY Periodicals, Inc. 2014
Copyright_xml – notice: 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.
– notice: 2014 WILEY Periodicals, Inc.
– notice: 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. 2014
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1002/bies.201400032
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Genetics Abstracts
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage 756
ExternalDocumentID PMC4143967
3402333161
24913292
10_1002_bies_201400032
BIES201400032
ark_67375_WNG_9F89141J_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
  funderid: MOP‐13690; MOP‐119586
– fundername: Canadian Institutes of Health Research
  grantid: MOP-13690
– fundername: Canadian Institutes of Health Research
  grantid: MOP-119586
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5722-c0873f538bd4251eec7cc27d8ae12514515e98cbe2bfbccb27add1e56b2562863
IEDL.DBID DR2
ISSN 0265-9247
1521-1878
IngestDate Thu Aug 21 18:29:40 EDT 2025
Fri Jul 11 07:37:05 EDT 2025
Fri Jul 11 15:01:24 EDT 2025
Fri Jul 25 10:39:03 EDT 2025
Thu Apr 03 07:10:16 EDT 2025
Tue Jul 01 03:22:31 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Jan 22 16:58:34 EST 2025
Wed Oct 30 09:56:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords waystations
RNA-seq
boundary elements
XIST
allelic imbalance
dosage compensation
epigenetic marks
Language English
License Attribution-NonCommercial-NoDerivs
2014 The Authors. Bioessays published by WILEY Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5722-c0873f538bd4251eec7cc27d8ae12514515e98cbe2bfbccb27add1e56b2562863
Notes CIHR - No. MOP-13690; No. MOP-119586
ark:/67375/WNG-9F89141J-F
ArticleID:BIES201400032
istex:295470FE723BE550463B47816251830B979266FA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201400032
PMID 24913292
PQID 1553146842
PQPubID 37030
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143967
proquest_miscellaneous_1566832319
proquest_miscellaneous_1547542615
proquest_journals_1553146842
pubmed_primary_24913292
crossref_primary_10_1002_bies_201400032
crossref_citationtrail_10_1002_bies_201400032
wiley_primary_10_1002_bies_201400032_BIES201400032
istex_primary_ark_67375_WNG_9F89141J_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
– name: Oxford, UK
PublicationTitle BioEssays
PublicationTitleAlternate BioEssays
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-5.
Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, et al. 2013. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol Biol Evol 30: 2588-601.
Berletch JB, Yang F, Disteche CM. 2010. Escape from X inactivation in mice and humans. Genome Biol 11: 213.
Wang X, Douglas KC, Vandeberg JL, Clark AG, et al. 2014. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24: 70-83.
Jeppesen P, Turner B. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9.
Lopes AM, Arnold-Croop SE, Amorim A, Carrel L. 2011. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 22: 572-82.
Nguyen DK, Disteche CM. 2006. Dosage compensation of the active X chromosome in mammals. Nat Genet 38: 47-53.
Yang F, Babak T, Shendure J, Disteche CM. 2010. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20: 614-22.
Gartler SM, Riggs AD. 1983. Mammalian X-chromosome inactivation. Ann Rev Genet 17: 155-90.
Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, et al. 2006. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79: 493-9.
Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 38-44.
Changolkar LN, Pehrson JR. 2006. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26: 4410-20.
Smith KP, Byron M, Clemson CM, Lawrence JB. 2004. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113: 324-35.
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973.
Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53.
Heard E, Mongelard F, Arnaud D, Chureau C, et al. 1999. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci USA 96: 6841-6.
Hansen RS, Canfield TK, Fjeld AD, Gartler SM. 1996. Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345-53.
Cotton AM, Lam L, Affleck JG, Wilson IM, et al. 2011. Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130: 187-201.
Dupont C, Gribnau J. 2013. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 25: 314-21.
Csankovszki G, Panning B, Bates B, Pehrson JR, et al. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22: 323-4.
Cotton AM, Avila L, Penaherrera MS, Affleck JG, et al. 2009. Inactive X chromosome-specific reduction in placental DNA methylation. Hum Mol Genet 18: 3544-52.
Clemson CM, McNeil JA, Willard HF, Lawrence JB. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259-75.
Khalil AM, Driscoll DJ. 2007. Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2: 114-8.
Zhao J, Sun BK, Erwin JA, Song JJ, et al. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322: 750-6.
Boggs BA, Cheung P, Heard E, Spector DL, et al. 2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30: 73-6.
Zhang LF, Huynh KD, Lee JT. 2007. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129: 693-706.
Hansen RS, Gartler SM. 1990. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci USA 87: 4174-8.
Clemson CM, Hall LL, Byron M, McNeil J, et al. 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103: 7688-93.
Vallot C, Huret C, Lesecque Y, Resch A, et al. 2013. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45: 239-41.
Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. 2003. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem 88: 923-31.
Lyon MF. 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-7.
Chow JC, Ciaudo C, Fazzari MJ, Mise N, et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-69.
Sadreyev RI, Yildirim E, Pinter SF, Lee JT. 2013. Bimodal quantitative relationships between histone modifications for X-linked and autosomal loci. Proc Natl Acad Sci USA 110: 6949-54.
Rastan S, Robertson EJ. 1985. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90: 379-88.
Migeon BR, Lee CH, Chowdury AK, Carpenter H. 2002. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71: 286-93.
Csankovszki G, Nagy A, Jaenisch R. 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153: 773-83.
Brown S, Rastan S. 1988. Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52: 151-4.
Goto Y, Gomez M, Brockdorff N, Feil R. 2002. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet Genome Res 99: 66-74.
Jiang J, Jing Y, Cost GJ, Chiang JC, et al. 2013. Translating dosage compensation to trisomy 21. Nature 500: 296-300.
Perche P-Y, Vourc'h C, Konecny L, Souchier C, et al. 2000. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531-4.
Hall LL, Carone DM, Gomez AV, Kolpa HJ, et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156: 907-19.
Kalantry S, Purushothaman S, Bowen RB, Starmer J, et al. 2009. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460: 647-51.
Goto Y, Kimura H. 2009. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37: 7416-28.
Peters AH, Mermoud JE, O'Carroll D, Pagani M, et al. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30: 77-80.
Tavares L, Dimitrova E, Oxley D, Webster J, et al. 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-78.
Lee JT, Davidow LS, Warshawsky D. 1999. Tsix, a gene antisense to Xist at the X-inactivation center. Nat Genet 21: 400-4.
Jegalian K, Page DC. 1998. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394: 776-80.
Jeon Y, Lee JT. 2011. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146: 119-33.
Li SM, Valo Z, Wang J, Gao H, et al. 2012. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7: e31751.
Dixon JR, Selvaraj S, Yue F, Kim A, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-80.
Pessia E, Makino T, Bailly-Bechet M, McLysaght A, et al. 2012. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 109: 5346-51.
Li N, Carrel L. 2008. Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105: 17055-60.
Gibcus JH, Dekker J. 2013. The hierarchy of the 3D genome. Mol Cell 49: 773-82.
Riggs AD. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14: 9-25.
Marks H, Chow JC, Denissov S, Francoijs KJ, et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19: 1361-73.
Cerase A, Smeets D, Tang YA, Gdula M, et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA 111: 2235-40.
Horvath LM, Li N, Carrel L. 2013. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet 9: e1003952.
Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, et al. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-83.
Ginno PA, Lim YW, Lott PL, Korf I, et al. 2013. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23: 1590-600.
Yang C, McLeod AJ, Cotton AM, de Leeuw CN, et al. 2012. Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 192: 1281-93.
Lyon MF. 1962. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135-45.
Chadwick BP, Willard HF. 2003. Chromatin of the Barr body: histone and non-histo
2010; 11
2012; 121
2012; 485
2012; 487
2006; 38
2002; 12
2004; 7
2002; 11
2002; 99
1999; 286
2014; 24
1975; 14
2008; 105
1998; 80
2004; 2
1983; 17
1998; 393
2014; 23
2013; 9
1998; 394
1998; 18
2010; 20
2006; 20
2000; 10
1999; 59
2006; 26
2000; 97
1949; 163
1985; 90
1962; 48
1996; 132
2007; 2
2013; 110
1988; 85
1991; 349
1996; 379
2009; 19
2012; 23
2012; 22
2009; 125
2009; 18
2013; 504
2013; 500
1962; 14
1999; 22
1999; 21
2013; 341
2001; 29
2011; 130
2012; 109
2014; 156
2011; 146
2001; 153
2004; 279
1981; 211
2005; 8
2012; 192
2002; 71
1994; 15
2009; 460
2008; 40
2014; 32
2006; 103
2013; 25
2006; 79
2000; 5
2002; 110
2013; 23
2013; 20
2010; 141
2011; 12
2001; 107
2003; 12
1990; 87
2013; 14
1997; 11
1996; 180
1984; 12
1993; 74
2011; 20
2011; 22
2011; 21
1983; 63
1977; 77
1999; 96
2011; 25
2005; 37
1996; 5
2003; 88
2014; 53
2004; 101
2007; 129
1984; 81
2013; 49
2002; 30
2013; 45
2005; 434
1988; 52
2006; 2
2008; 322
2014; 111
2012; 148
2009; 29
2012; 151
2001; 110
2014; 81
1994; 368
2004; 113
2013; 35
2013; 30
2012; 7
2003; 300
2009; 37
Lyon MF (e_1_2_13_16_1) 1962; 14
e_1_2_13_120_1
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_19_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_121_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_93_1
e_1_2_13_97_1
Rastan S (e_1_2_13_7_1) 1985; 90
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_35_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
10409422 - Genomics. 1999 Jul 15;59(2):113-21
15772651 - Nature. 2005 Mar 17;434(7031):325-37
8343956 - Cell. 1993 Jul 30;74(2):281-9
24278033 - PLoS Genet. 2013 Nov;9(11):e1003952
21769671 - Mamm Genome. 2011 Oct;22(9-10):572-82
3834036 - J Embryol Exp Morphol. 1985 Dec;90:379-88
7530612 - Dev Genet. 1994;15(6):504-14
11747809 - Cell. 2001 Dec 14;107(6):727-38
6364959 - Annu Rev Genet. 1983;17:155-90
10431231 - Nat Genet. 1999 Aug;22(4):323-4
23863942 - Nature. 2013 Aug 15;500(7462):296-300
10192391 - Nat Genet. 1999 Apr;21(4):400-4
23542155 - Nat Struct Mol Biol. 2013 May;20(5):566-73
18936163 - Mol Cell Biol. 2009 Jan;29(1):150-6
14476104 - Proc Natl Acad Sci U S A. 1962 May 15;48:756-63
23023002 - Genetics. 2012 Dec;192(4):1281-93
16007088 - Nat Genet. 2005 Aug;37(8):853-62
14467629 - Am J Hum Genet. 1962 Jun;14:135-48
23828888 - Science. 2013 Aug 16;341(6147):1237973
23868195 - Genome Res. 2013 Oct;23(10):1590-600
22495300 - Nature. 2012 May 17;485(7398):376-80
1693431 - Proc Natl Acad Sci U S A. 1990 Jun;87(11):4174-8
10377420 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364-9
19617692 - Cytogenet Genome Res. 2009;125(1):19-25
23832846 - Bioessays. 2013 Sep;35(9):818-28
11740495 - Nat Genet. 2002 Jan;30(1):73-6
18120749 - Nature. 1949 Apr 30;163(4148):676
24411735 - Neuron. 2014 Jan 8;81(1):103-19
21553122 - Hum Genet. 2011 Aug;130(2):175-85
24023392 - Mol Biol Evol. 2013 Dec;30(12):2588-601
21597963 - Hum Genet. 2011 Aug;130(2):187-201
8954732 - Dev Biol. 1996 Dec 15;180(2):618-30
11433014 - Nucleic Acids Res. 2001 Jul 1;29(13):2699-705
16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93
24462204 - Mol Cell. 2014 Jan 23;53(2):301-16
10359800 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6841-6
19843608 - Nucleic Acids Res. 2009 Dec;37(22):7416-28
6164095 - Science. 1981 Jan 23;211(4480):393-6
12023758 - Am J Hum Genet. 2002 Aug;71(2):286-93
20471072 - Cell. 2010 May 28;141(5):872-83
21947602 - Chromosoma. 2012 Feb;121(1):71-8
8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53
16341221 - Nat Genet. 2006 Jan;38(1):47-53
6514579 - Nucleic Acids Res. 1984 Dec 21;12(24):9333-48
24115267 - Stem Cells. 2014 Feb;32(2):377-90
12444100 - Hum Mol Genet. 2002 Dec 1;11(25):3157-65
15574503 - Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17450-5
15772666 - Nature. 2005 Mar 17;434(7031):400-4
15616869 - Chromosoma. 2004 Dec;113(6):324-35
2456574 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5605-9
19586922 - Hum Mol Genet. 2009 Oct 1;18(19):3544-52
22722828 - Nature. 2012 Jul 12;487(7406):254-8
21791549 - Hum Mol Genet. 2011 Oct 15;20(20):3964-73
9678347 - Cytogenet Cell Genet. 1998;80(1-4):133-7
24176135 - Genome Biol. 2013;14(11):R122
18425126 - Nat Genet. 2008 May;40(5):663-9
18971342 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17055-60
21729784 - Cell. 2011 Jul 8;146(1):119-33
9500539 - Nat Genet. 1998 Mar;18(3):212-3
12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78
23564346 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6949-54
10542153 - Science. 1999 Oct 29;286(5441):964-7
19581487 - Genome Res. 2009 Aug;19(8):1361-73
20363980 - Genome Res. 2010 May;20(5):614-22
24186870 - Hum Mol Genet. 2014 Mar 1;23(5):1224-36
18974356 - Science. 2008 Oct 31;322(5902):750-6
17965609 - Epigenetics. 2007 Apr-Jun;2(2):114-8
23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
15525528 - Dev Cell. 2004 Nov;7(5):663-76
16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37
6935682 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6759-63
11935340 - Hum Genet. 2002 Mar;110(3):271-8
6682404 - Hum Genet. 1983;63(2):171-4
8139659 - Nature. 1994 Mar 10;368(6467):154-6
24065775 - Genome Res. 2014 Jan;24(1):64-9
20573260 - Genome Biol. 2010;11(6):213
22495304 - Nature. 2012 May 17;485(7398):381-5
8538762 - Nature. 1996 Jan 11;379(6561):131-7
11734999 - Chromosoma. 2001 Nov;110(6):411-20
12649488 - Science. 2003 Apr 4;300(5616):131-5
11114523 - Curr Biol. 2000 Nov 30;10(23):1531-4
22384067 - PLoS One. 2012;7(2):e31751
23578369 - Curr Opin Cell Biol. 2013 Jun;25(3):314-21
16909387 - Am J Hum Genet. 2006 Sep;79(3):493-9
22325148 - Cell. 2012 Feb 17;148(4):664-78
6585829 - Proc Natl Acad Sci U S A. 1984 May;81(9):2806-10
1985261 - Nature. 1991 Jan 3;349(6304):38-44
20550932 - Cell. 2010 Jun 11;141(6):956-69
22948768 - Genome Res. 2012 Oct;22(10):1864-76
15252442 - PLoS Biol. 2004 Jul;2(7):E171
12616531 - J Cell Biochem. 2003 Apr 1;88(5):923-31
8636206 - J Cell Biol. 1996 Feb;132(3):259-75
24581492 - Cell. 2014 Feb 27;156(5):907-19
8852665 - Hum Mol Genet. 1996 Mar;5(3):391-401
11839280 - Curr Biol. 2002 Feb 5;12(3):247-51
1093816 - Cytogenet Cell Genet. 1975;14(1):9-25
10882105 - Mol Cell. 2000 Apr;5(4):695-705
15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5
24469834 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2235-40
21282478 - Genome Res. 2011 Mar;21(3):402-9
24162848 - Nature. 2013 Dec 19;504(7480):465-9
9634239 - Nature. 1998 Jun 11;393(6685):599-601
16948528 - PLoS Comput Biol. 2006 Sep 1;2(9):e113
12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74
15669143 - Dev Cell. 2005 Jan;8(1):31-42
11352938 - J Cell Biol. 2001 May 14;153(4):773-84
11740497 - Nat Genet. 2002 Jan;30(1):77-80
21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83
22392987 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5346-51
3209066 - Genet Res. 1988 Oct;52(2):151-4
21862626 - Genome Res. 2011 Oct;21(10):1592-600
23334669 - Nat Genet. 2013 Mar;45(3):239-41
24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23
22841499 - Dev Cell. 2012 Aug 14;23(2):265-79
16738309 - Mol Cell Biol. 2006 Jun;26(12):4410-20
19571810 - Nature. 2009 Jul 30;460(7255):647-51
9009199 - Genes Dev. 1997 Jan 15;11(2):156-66
10841562 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6634-9
21765457 - Nat Rev Genet. 2011 Aug;12(8):542-53
24065774 - Genome Res. 2014 Jan;24(1):70-83
17512404 - Cell. 2007 May 18;129(4):693-706
23178118 - Cell. 2012 Nov 21;151(5):951-63
9723615 - Nature. 1998 Aug 20;394(6695):776-80
References_xml – reference: Wang Z, Willard HF, Mukherjee S, Furey TS. 2006. Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput Biol 2: e113.
– reference: Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, et al. 2011. DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21: 1592-600.
– reference: Riggs AD. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14: 9-25.
– reference: Clemson CM, McNeil JA, Willard HF, Lawrence JB. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259-75.
– reference: Koren A, McCarroll SA. 2014. Random replication of the inactive X chromosome. Genome Res 24: 64-9.
– reference: Csankovszki G, Panning B, Bates B, Pehrson JR, et al. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22: 323-4.
– reference: Yang C, McLeod AJ, Cotton AM, de Leeuw CN, et al. 2012. Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 192: 1281-93.
– reference: Nozawa RS, Nagao K, Igami KT, Shibata S, et al. 2013. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol 20: 566-73.
– reference: Jeon Y, Lee JT. 2011. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146: 119-33.
– reference: Cotton AM, Avila L, Penaherrera MS, Affleck JG, et al. 2009. Inactive X chromosome-specific reduction in placental DNA methylation. Hum Mol Genet 18: 3544-52.
– reference: Wolf SF, Dintzis S, Toniolo D, Persico G, et al. 1984. Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res 12: 9333-48.
– reference: Carrel L, Clemson CM, Dunn JM, Miller AP, et al. 1996. X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse. Hum Mol Genet 5: 391-402.
– reference: Lahn BT, Page DC. 1999. Four evolutionary strata on the human X chromosome. Science 286: 964-7.
– reference: Calabrese JM, Sun W, Song L, Mugford JW, et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151: 951-63.
– reference: Filippova GN, Cheng MK, Moore JM, Truong JP, et al. 2005. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8: 31-42.
– reference: Bailey JA, Carrel L, Chakravarti A, Eichler E. 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97: 6634-9.
– reference: Simon MD, Pinter SF, Fang R, Sarma K, et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504: 465-9.
– reference: Heard E, Mongelard F, Arnaud D, Chureau C, et al. 1999. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci USA 96: 6841-6.
– reference: Smith KP, Byron M, Clemson CM, Lawrence JB. 2004. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113: 324-35.
– reference: Vallot C, Huret C, Lesecque Y, Resch A, et al. 2013. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45: 239-41.
– reference: Lyon MF. 1962. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135-45.
– reference: Nora EP, Lajoie BR, Schulz EG, Giorgetti L, et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485: 381-5.
– reference: Horvath LM, Li N, Carrel L. 2013. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet 9: e1003952.
– reference: Al Nadaf S, Deakin JE, Gilbert C, Robinson TJ, et al. 2012. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 121: 71-8.
– reference: Anderson CL, Brown CJ. 2002. Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation. Hum Genet 110: 271-8.
– reference: Migeon BR, Lee CH, Chowdury AK, Carpenter H. 2002. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71: 286-93.
– reference: Hall LL, Clemson CM, Byron M, Wydner K, et al. 2002. Unbalanced X;autosome translocations provide evidence for sequence specificity in the association of XIST RNA with chromatin. Hum Mol Genet 11: 3157-65.
– reference: Goto Y, Gomez M, Brockdorff N, Feil R. 2002. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet Genome Res 99: 66-74.
– reference: Hansen RS, Canfield TK, Fjeld AD, Gartler SM. 1996. Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345-53.
– reference: Khalil AM, Driscoll DJ. 2007. Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2: 114-8.
– reference: Gartler SM, Goldman MA. 1994. Reactivation of inactive X-linked genes. Dev Genet 15: 504-14.
– reference: Gendrel AV, Apedaile A, Coker H, Termanis A, et al. 2012. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev Cell 23: 265-79.
– reference: da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, et al. 2014. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53: 301-16.
– reference: Zhang LF, Huynh KD, Lee JT. 2007. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129: 693-706.
– reference: Marahrens Y, Panning B, Dausman J, Strauss W, et al. 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11: 156-66.
– reference: Wang X, Douglas KC, Vandeberg JL, Clark AG, et al. 2014. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24: 70-83.
– reference: Hansen RS, Gartler SM. 1990. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci USA 87: 4174-8.
– reference: Wutz A, Jaenisch R. 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5: 695-705.
– reference: Peters AH, Mermoud JE, O'Carroll D, Pagani M, et al. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30: 77-80.
– reference: Hall LL, Carone DM, Gomez AV, Kolpa HJ, et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156: 907-19.
– reference: Cerase A, Smeets D, Tang YA, Gdula M, et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA 111: 2235-40.
– reference: Morishima A, Grumbach MM, Taylor JH. 1962. Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci USA 48: 756-63.
– reference: Heard E, Rougelle C, Arnaud D, Avner P, et al. 2001. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107: 727-38.
– reference: Ross MT, Grafham DV, Coffey AJ, Scherer S, et al. 2005. The DNA sequence of the human X chromosome. Nature 434: 325-37.
– reference: Penny GD, Kay GF, Sheardown SA, Rastan S, et al. 1996. Requirement for Xist in X chromosome inactivation. Nature 379: 131-7.
– reference: Pessia E, Makino T, Bailly-Bechet M, McLysaght A, et al. 2012. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 109: 5346-51.
– reference: Schempp W, Meer B. 1983. Cytologic evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63: 171-4.
– reference: Wu H, Luo J, Yu H, Rattner A, et al. 2014. Cellular resolution maps of x chromosome inactivation: implications for neural development, function, and disease. Neuron 81: 103-19.
– reference: Cotton AM, Chen CY, Lam LL, Wasserman WW, et al. 2014. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum Mol Genet 23: 1211-23.
– reference: Chadwick BP, Willard HF. 2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci USA 101: 17450-5.
– reference: Mietton F, Sengupta AK, Molla A, Picchi G, et al. 2009. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 29: 150-6.
– reference: Dupont C, Gribnau J. 2013. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 25: 314-21.
– reference: Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, et al. 2013. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol Biol Evol 30: 2588-601.
– reference: Lingenfelter PA, Adler DA, Poslinski D, Thomas S, et al. 1998. Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nat Genet 18: 212-3.
– reference: Zhao J, Sun BK, Erwin JA, Song JJ, et al. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322: 750-6.
– reference: Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 38-44.
– reference: Brown CJ, Willard HF. 1994. The human X inactivation center is not required for maintenance of X inactivation. Nature 368: 154-6.
– reference: Goodfellow PJ, Mondello C, Darling SM, Pym B, et al. 1988. Absence of methylation of a CpG-rich region at the 5′ end of the MIC2 gene on the active X, and inactive X, and the Y chromosome. Proc Natl Acad Sci USA 85: 5605-9.
– reference: Barr ML, Bertram EG. 1949. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163: 676-7.
– reference: Jeppesen P, Turner B. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9.
– reference: Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487: 254-8.
– reference: Lopes AM, Arnold-Croop SE, Amorim A, Carrel L. 2011. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 22: 572-82.
– reference: Chadwick BP, Willard HF. 2003. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum Mol Genet 12: 2167-78.
– reference: Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53.
– reference: Lee JT, Davidow LS, Warshawsky D. 1999. Tsix, a gene antisense to Xist at the X-inactivation center. Nat Genet 21: 400-4.
– reference: Yang F, Babak T, Shendure J, Disteche CM. 2010. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20: 614-22.
– reference: Mermoud JE, Popova B, Peters AH, Jenuwein T, et al. 2002. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol 12: 247-51.
– reference: Mohandas T, Sparkes RS, Hellkuhl B, Grzeschik KH, et al. 1977. Expression of an X-linked gene from an inactive human X chromosome in mouse-human hybrid cells: futher evidence for the noninactivation of the steroid sulfatase locus in man. Proc Natl Acad Sci USA 77: 6759-63.
– reference: Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, et al. 2008. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40: 663-9.
– reference: Cotton AM, Ge B, Light N, Adoue V, et al. 2013. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol 14: R122.
– reference: Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. 2003. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem 88: 923-31.
– reference: Chadwick BP, Valley CM, Willard HF. 2001. Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nucleic Acids Res 29: 2699-705.
– reference: Costanzi C, Pehrson JR. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599-601.
– reference: de Napoles M, Mermoud JE, Wakao R, Tang YA, et al. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663-76.
– reference: Jiang J, Jing Y, Cost GJ, Chiang JC, et al. 2013. Translating dosage compensation to trisomy 21. Nature 500: 296-300.
– reference: Nguyen DK, Disteche CM. 2006. Dosage compensation of the active X chromosome in mammals. Nat Genet 38: 47-53.
– reference: Mohandas T, Sparkes RS, Shapiro LJ. 1981. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211: 393-6.
– reference: Berletch JB, Yang F, Disteche CM. 2010. Escape from X inactivation in mice and humans. Genome Biol 11: 213.
– reference: Kohlmaier A, Savarese F, Lachner M, Martens J, et al. 2004. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2: E171.
– reference: Brown S, Rastan S. 1988. Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52: 151-4.
– reference: Murakami K, Ohhira T, Oshiro E, Qi D, et al. 2009. Identification of the chromatin regions coated by non-coding Xist RNA. Cytogenet Genome Res 125: 19-25.
– reference: Clemson CM, Hall LL, Byron M, McNeil J, et al. 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103: 7688-93.
– reference: Cotton AM, Lam L, Affleck JG, Wilson IM, et al. 2011. Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130: 187-201.
– reference: Li SM, Valo Z, Wang J, Gao H, et al. 2012. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7: e31751.
– reference: Keohane AM, O'Neill LP, Belyaev ND, Lavender JS, et al. 1996. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 180: 618-30.
– reference: Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, et al. 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci USA 81: 2806-10.
– reference: Rasmussen TP, Wutz A, Pehrson JR, Jaenisch R. 2001. Expression of Xist RNA is sufficient to initiate macrochromatin body formation. Chromosoma 110: 411-20.
– reference: Nora EP, Dekker J, Heard E. 2013. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? BioEssays 35: 818-28.
– reference: Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, et al. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-83.
– reference: Marks H, Chow JC, Denissov S, Francoijs KJ, et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19: 1361-73.
– reference: Migeon BR, Kazi E, Haisley-Royster C, Hu J, et al. 1999. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics 59: 113-21.
– reference: Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, et al. 2006. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79: 493-9.
– reference: Jegalian K, Page DC. 1998. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394: 776-80.
– reference: Weber M, Davies JJ, Wittig D, Oakeley EJ, et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37: 853-62.
– reference: Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973.
– reference: Chaumeil J, Le Baccon P, Wutz A, Heard E. 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20: 2223-37.
– reference: Tavares L, Dimitrova E, Oxley D, Webster J, et al. 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-78.
– reference: Gartler SM, Riggs AD. 1983. Mammalian X-chromosome inactivation. Ann Rev Genet 17: 155-90.
– reference: Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, et al. 2012. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22: 1864-76.
– reference: Yang C, Chapman AG, Kelsey AD, Minks J, et al. 2011. X-chromosome inactivation: molecular mechanisms from the human perspective. Hum Genet 130: 175-85.
– reference: Csankovszki G, Nagy A, Jaenisch R. 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153: 773-83.
– reference: Lyon MF. 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-7.
– reference: Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-5.
– reference: Ginno PA, Lim YW, Lott PL, Korf I, et al. 2013. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23: 1590-600.
– reference: Kucera KS, Reddy TE, Pauli F, Gertz J, et al. 2011. Allele-specific distribution of RNA polymerase II on female X chromosomes. Hum Mol Genet 20: 3964-73.
– reference: Gibcus JH, Dekker J. 2013. The hierarchy of the 3D genome. Mol Cell 49: 773-82.
– reference: Kalantry S, Purushothaman S, Bowen RB, Starmer J, et al. 2009. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460: 647-51.
– reference: Boggs BA, Cheung P, Heard E, Spector DL, et al. 2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30: 73-6.
– reference: Dubois A, Deuve JL, Navarro P, Merzouk S, et al. 2014. Spontaneous reactivation of clusters of x-linked genes is associated with the plasticity of X-inactivation in mouse trophoblast stem cells. Stem Cells 32: 377-90.
– reference: Rastan S, Robertson EJ. 1985. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90: 379-88.
– reference: Bala Tannan N, Brahmachary M, Garg P, Borel C, et al. 2014. DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet 23: 1224-36.
– reference: Sadreyev RI, Yildirim E, Pinter SF, Lee JT. 2013. Bimodal quantitative relationships between histone modifications for X-linked and autosomal loci. Proc Natl Acad Sci USA 110: 6949-54.
– reference: Changolkar LN, Pehrson JR. 2006. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26: 4410-20.
– reference: Fang J, Chen T, Chadwick B, Li E, et al. 2004. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X-inactivation. J Biol Chem 279: 52812-5.
– reference: Goto Y, Kimura H. 2009. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37: 7416-28.
– reference: Carrel L, Willard HF. 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400-4.
– reference: Carrel L, Willard HF. 1999. Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci USA 96: 7364-9.
– reference: Chow JC, Ciaudo C, Fazzari MJ, Mise N, et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-69.
– reference: Li N, Carrel L. 2008. Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105: 17055-60.
– reference: Dixon JR, Selvaraj S, Yue F, Kim A, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-80.
– reference: Splinter E, de Wit E, Nora EP, Klous P, et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25: 1371-83.
– reference: Perche P-Y, Vourc'h C, Konecny L, Souchier C, et al. 2000. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531-4.
– reference: Nguyen DK, Yang F, Kaul R, Alkan C, et al. 2011. Clcn4-2 genomic structure differs between the X locus in Mus spretus and the autosomal locus in Mus musculus: AT motif enrichment on the X. Genome Res 21: 402-9.
– volume: 37
  start-page: 7416
  year: 2009
  end-page: 28
  article-title: Inactive X chromosome‐specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X‐inactivated and an escape gene
  publication-title: Nucleic Acids Res
– volume: 180
  start-page: 618
  year: 1996
  end-page: 30
  article-title: X‐inactivation and histone H4 acetylation in embryonic stem cells
  publication-title: Dev Biol
– volume: 146
  start-page: 119
  year: 2011
  end-page: 33
  article-title: YY1 tethers Xist RNA to the inactive X nucleation center
  publication-title: Cell
– volume: 79
  start-page: 493
  year: 2006
  end-page: 9
  article-title: X chromosome‐inactivation patterns of 1,005 phenotypically unaffected females
  publication-title: Am J Hum Genet
– volume: 96
  start-page: 6841
  year: 1999
  end-page: 6
  article-title: Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 2167
  year: 2003
  end-page: 78
  article-title: Chromatin of the Barr body: histone and non‐histone proteins associated with or excluded from the inactive X chromosome
  publication-title: Hum Mol Genet
– volume: 23
  start-page: 1211
  year: 2014
  end-page: 23
  article-title: Spread of X‐chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains
  publication-title: Hum Mol Genet
– volume: 74
  start-page: 281
  year: 1993
  end-page: 9
  article-title: The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression
  publication-title: Cell
– volume: 148
  start-page: 664
  year: 2012
  end-page: 78
  article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3
  publication-title: Cell
– volume: 11
  start-page: 213
  year: 2010
  article-title: Escape from X inactivation in mice and humans
  publication-title: Genome Biol
– volume: 151
  start-page: 951
  year: 2012
  end-page: 63
  article-title: Site‐specific silencing of regulatory elements as a mechanism of X inactivation
  publication-title: Cell
– volume: 48
  start-page: 756
  year: 1962
  end-page: 63
  article-title: Asynchronous duplication of human chromosomes and the origin of sex chromatin
  publication-title: Proc Natl Acad Sci USA
– volume: 163
  start-page: 676
  year: 1949
  end-page: 7
  article-title: A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis
  publication-title: Nature
– volume: 434
  start-page: 400
  year: 2005
  end-page: 4
  article-title: X‐inactivation profile reveals extensive variability in X‐linked gene expression in females
  publication-title: Nature
– volume: 2
  start-page: 114
  year: 2007
  end-page: 8
  article-title: Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation
  publication-title: Epigenetics
– volume: 130
  start-page: 187
  year: 2011
  end-page: 201
  article-title: Chromosome‐wide DNA methylation analysis predicts human tissue‐specific X inactivation
  publication-title: Hum Genet
– volume: 5
  start-page: 1345
  year: 1996
  end-page: 53
  article-title: Role of late replication timing in the silencing of X‐linked genes
  publication-title: Hum Mol Genet
– volume: 103
  start-page: 7688
  year: 2006
  end-page: 93
  article-title: The X chromosome is organized into a gene‐rich outer rim and an internal core containing silenced nongenic sequences
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 663
  year: 2004
  end-page: 76
  article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation
  publication-title: Dev Cell
– volume: 20
  start-page: 614
  year: 2010
  end-page: 22
  article-title: Global survey of escape from X inactivation by RNA‐sequencing in mouse
  publication-title: Genome Res
– volume: 96
  start-page: 7364
  year: 1999
  end-page: 9
  article-title: Heterogeneous gene expression from the inactive X chromosome: an X‐linked gene that escapes X inactivation in some human cell lines but is inactivated in others
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 9
  year: 1975
  end-page: 25
  article-title: X inactivation, differentiation, and DNA methylation
  publication-title: Cytogenet Cell Genet
– volume: 90
  start-page: 379
  year: 1985
  end-page: 88
  article-title: X‐chromosome deletions in embryo‐derived (EK) cell lines associated with lack of X‐chromosome inactivation
  publication-title: J Embryol Exp Morphol
– volume: 29
  start-page: 2699
  year: 2001
  end-page: 705
  article-title: Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome
  publication-title: Nucleic Acids Res
– volume: 130
  start-page: 175
  year: 2011
  end-page: 85
  article-title: X‐chromosome inactivation: molecular mechanisms from the human perspective
  publication-title: Hum Genet
– volume: 394
  start-page: 776
  year: 1998
  end-page: 80
  article-title: A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated
  publication-title: Nature
– volume: 460
  start-page: 647
  year: 2009
  end-page: 51
  article-title: Evidence of Xist RNA‐independent initiation of mouse imprinted X‐chromosome inactivation
  publication-title: Nature
– volume: 286
  start-page: 964
  year: 1999
  end-page: 7
  article-title: Four evolutionary strata on the human X chromosome
  publication-title: Science
– volume: 97
  start-page: 6634
  year: 2000
  end-page: 9
  article-title: Molecular evidence for a relationship between LINE‐1 elements and X chromosome inactivation: the Lyon repeat hypothesis
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 572
  year: 2011
  end-page: 82
  article-title: Clustered transcripts that escape X inactivation at mouse XqD
  publication-title: Mamm Genome
– volume: 9
  start-page: e1003952
  year: 2013
  article-title: Deletion of an X‐inactivation boundary disrupts adjacent gene silencing
  publication-title: PLoS Genet
– volume: 379
  start-page: 131
  year: 1996
  end-page: 7
  article-title: Requirement for Xist in X chromosome inactivation
  publication-title: Nature
– volume: 20
  start-page: 2223
  year: 2006
  end-page: 37
  article-title: A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced
  publication-title: Genes Dev
– volume: 322
  start-page: 750
  year: 2008
  end-page: 6
  article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome
  publication-title: Science
– volume: 85
  start-page: 5605
  year: 1988
  end-page: 9
  article-title: Absence of methylation of a CpG‐rich region at the 5′ end of the gene on the active X, and inactive X, and the Y chromosome
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 247
  year: 2002
  end-page: 51
  article-title: Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation
  publication-title: Curr Biol
– volume: 87
  start-page: 4174
  year: 1990
  end-page: 8
  article-title: 5‐Azacytidine‐induced reactivation of the human X chromosome‐linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island
  publication-title: Proc Natl Acad Sci USA
– volume: 125
  start-page: 19
  year: 2009
  end-page: 25
  article-title: Identification of the chromatin regions coated by non‐coding Xist RNA
  publication-title: Cytogenet Genome Res
– volume: 81
  start-page: 2806
  year: 1984
  end-page: 10
  article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X‐chromosome inactivation
  publication-title: Proc Natl Acad Sci USA
– volume: 53
  start-page: 301
  year: 2014
  end-page: 16
  article-title: Jarid2 is implicated in the initial Xist‐induced targeting of PRC2 to the inactive X chromosome
  publication-title: Mol Cell
– volume: 18
  start-page: 212
  year: 1998
  end-page: 3
  article-title: Escape from X inactivation of Smcx is preceded by silencing during mouse development
  publication-title: Nat Genet
– volume: 110
  start-page: 411
  year: 2001
  end-page: 20
  article-title: Expression of Xist RNA is sufficient to initiate macrochromatin body formation
  publication-title: Chromosoma
– volume: 77
  start-page: 6759
  year: 1977
  end-page: 63
  article-title: Expression of an X‐linked gene from an inactive human X chromosome in mouse‐human hybrid cells: futher evidence for the noninactivation of the steroid sulfatase locus in man
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 853
  year: 2005
  end-page: 62
  article-title: Chromosome‐wide and promoter‐specific analyses identify sites of differential DNA methylation in normal and transformed human cells
  publication-title: Nat Genet
– volume: 30
  start-page: 73
  year: 2002
  end-page: 6
  article-title: Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes
  publication-title: Nat Genet
– volume: 279
  start-page: 52812
  year: 2004
  end-page: 5
  article-title: Ring1b‐mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X‐inactivation
  publication-title: J Biol Chem
– volume: 21
  start-page: 400
  year: 1999
  end-page: 4
  article-title: Tsix, a gene antisense to Xist at the X‐inactivation center
  publication-title: Nat Genet
– volume: 81
  start-page: 103
  year: 2014
  end-page: 19
  article-title: Cellular resolution maps of x chromosome inactivation: implications for neural development, function, and disease
  publication-title: Neuron
– volume: 32
  start-page: 377
  year: 2014
  end-page: 90
  article-title: Spontaneous reactivation of clusters of x‐linked genes is associated with the plasticity of X‐inactivation in mouse trophoblast stem cells
  publication-title: Stem Cells
– volume: 21
  start-page: 1592
  year: 2011
  end-page: 600
  article-title: DNA methylation profiles of human active and inactive X chromosomes
  publication-title: Genome Res
– volume: 38
  start-page: 47
  year: 2006
  end-page: 53
  article-title: Dosage compensation of the active X chromosome in mammals
  publication-title: Nat Genet
– volume: 20
  start-page: 3964
  year: 2011
  end-page: 73
  article-title: Allele‐specific distribution of RNA polymerase II on female X chromosomes
  publication-title: Hum Mol Genet
– volume: 485
  start-page: 381
  year: 2012
  end-page: 5
  article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre
  publication-title: Nature
– volume: 21
  start-page: 402
  year: 2011
  end-page: 9
  article-title: Clcn4‐2 genomic structure differs between the X locus in and the autosomal locus in : AT motif enrichment on the X
  publication-title: Genome Res
– volume: 349
  start-page: 38
  year: 1991
  end-page: 44
  article-title: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome
  publication-title: Nature
– volume: 341
  start-page: 1237973
  year: 2013
  article-title: The Xist lncRNA exploits three‐dimensional genome architecture to spread across the X chromosome
  publication-title: Science
– volume: 63
  start-page: 171
  year: 1983
  end-page: 4
  article-title: Cytologic evidence for three human X‐chromosomal segments escaping inactivation
  publication-title: Hum Genet
– volume: 22
  start-page: 1864
  year: 2012
  end-page: 76
  article-title: Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations
  publication-title: Genome Res
– volume: 30
  start-page: 2588
  year: 2013
  end-page: 601
  article-title: Genes that escape X‐inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving
  publication-title: Mol Biol Evol
– volume: 107
  start-page: 727
  year: 2001
  end-page: 38
  article-title: Methylation of histone H3 at Lys‐9 is an early mark on the X chromosome during X inactivation
  publication-title: Cell
– volume: 26
  start-page: 4410
  year: 2006
  end-page: 20
  article-title: macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome
  publication-title: Mol Cell Biol
– volume: 121
  start-page: 71
  year: 2012
  end-page: 8
  article-title: A cross‐species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation
  publication-title: Chromosoma
– volume: 40
  start-page: 663
  year: 2008
  end-page: 9
  article-title: SmcHD1, containing a structural‐maintenance‐of‐chromosomes hinge domain, has a critical role in X inactivation
  publication-title: Nat Genet
– volume: 300
  start-page: 131
  year: 2003
  end-page: 5
  article-title: Role of histone H3 lysine 27 methylation in X inactivation
  publication-title: Science
– volume: 15
  start-page: 504
  year: 1994
  end-page: 14
  article-title: Reactivation of inactive X‐linked genes
  publication-title: Dev Genet
– volume: 110
  start-page: 271
  year: 2002
  end-page: 8
  article-title: Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation
  publication-title: Hum Genet
– volume: 504
  start-page: 465
  year: 2013
  end-page: 9
  article-title: High‐resolution Xist binding maps reveal two‐step spreading during X‐chromosome inactivation
  publication-title: Nature
– volume: 19
  start-page: 1361
  year: 2009
  end-page: 73
  article-title: High‐resolution analysis of epigenetic changes associated with X inactivation
  publication-title: Genome Res
– volume: 109
  start-page: 5346
  year: 2012
  end-page: 51
  article-title: Mammalian X chromosome inactivation evolved as a dosage‐compensation mechanism for dosage‐sensitive genes on the X chromosome
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 265
  year: 2012
  end-page: 79
  article-title: Smchd1‐dependent and ‐independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome
  publication-title: Dev Cell
– volume: 156
  start-page: 907
  year: 2014
  end-page: 19
  article-title: Stable C0T‐1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes
  publication-title: Cell
– volume: 113
  start-page: 324
  year: 2004
  end-page: 35
  article-title: Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands
  publication-title: Chromosoma
– volume: 17
  start-page: 155
  year: 1983
  end-page: 90
  article-title: Mammalian X‐chromosome inactivation
  publication-title: Ann Rev Genet
– volume: 500
  start-page: 296
  year: 2013
  end-page: 300
  article-title: Translating dosage compensation to trisomy 21
  publication-title: Nature
– volume: 22
  start-page: 323
  year: 1999
  end-page: 4
  article-title: Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation
  publication-title: Nat Genet
– volume: 192
  start-page: 1281
  year: 2012
  end-page: 93
  article-title: Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis‐acting regulators of epigenetic silencing
  publication-title: Genetics
– volume: 23
  start-page: 1590
  year: 2013
  end-page: 600
  article-title: GC skew at the 5′ and 3′ ends of human genes links R‐loop formation to epigenetic regulation and transcription termination
  publication-title: Genome Res
– volume: 25
  start-page: 314
  year: 2013
  end-page: 21
  article-title: Different flavors of X‐chromosome inactivation in mammals
  publication-title: Curr Opin Cell Biol
– volume: 52
  start-page: 151
  year: 1988
  end-page: 4
  article-title: Age‐related reactivation of an X‐linked gene close to the inactivation centre in the mouse
  publication-title: Genet Res
– volume: 8
  start-page: 31
  year: 2005
  end-page: 42
  article-title: Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development
  publication-title: Dev Cell
– volume: 485
  start-page: 376
  year: 2012
  end-page: 80
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
– volume: 141
  start-page: 956
  year: 2010
  end-page: 69
  article-title: LINE‐1 activity in facultative heterochromatin formation during X chromosome inactivation
  publication-title: Cell
– volume: 29
  start-page: 150
  year: 2009
  end-page: 6
  article-title: Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome
  publication-title: Mol Cell Biol
– volume: 368
  start-page: 154
  year: 1994
  end-page: 6
  article-title: The human X inactivation center is not required for maintenance of X inactivation
  publication-title: Nature
– volume: 99
  start-page: 66
  year: 2002
  end-page: 74
  article-title: Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X‐linked genes
  publication-title: Cytogenet Genome Res
– volume: 2
  start-page: E171
  year: 2004
  article-title: A chromosomal memory triggered by Xist regulates histone methylation in X inactivation
  publication-title: PLoS Biol
– volume: 101
  start-page: 17450
  year: 2004
  end-page: 5
  article-title: Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e31751
  year: 2012
  article-title: Transcriptome‐wide survey of mouse CNS‐derived cells reveals monoallelic expression within novel gene families
  publication-title: PLoS One
– volume: 153
  start-page: 773
  year: 2001
  end-page: 83
  article-title: Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation
  publication-title: J Cell Biol
– volume: 23
  start-page: 1224
  year: 2014
  end-page: 36
  article-title: DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation
  publication-title: Hum Mol Genet
– volume: 71
  start-page: 286
  year: 2002
  end-page: 93
  article-title: Species differences in TSIX/Tsix reveal the roles of these genes in X‐chromosome inactivation
  publication-title: Am J Hum Genet
– volume: 111
  start-page: 2235
  year: 2014
  end-page: 40
  article-title: Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 156
  year: 1997
  end-page: 66
  article-title: Xist‐deficient mice are defective in dosage compensation but not spermatogenesis
  publication-title: Genes Dev
– volume: 10
  start-page: 1531
  year: 2000
  end-page: 4
  article-title: Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density
  publication-title: Curr Biol
– volume: 88
  start-page: 923
  year: 2003
  end-page: 31
  article-title: Same origins of DNA replication function on the active and inactive human X chromosomes
  publication-title: J Cell Biochem
– volume: 80
  start-page: 133
  year: 1998
  end-page: 7
  article-title: X‐chromosome inactivation: a repeat hypothesis
  publication-title: Cytogenet Cell Genet
– volume: 2
  start-page: e113
  year: 2006
  article-title: Evidence of influence of genomic DNA sequence on human X chromosome inactivation
  publication-title: PLoS Comput Biol
– volume: 49
  start-page: 773
  year: 2013
  end-page: 82
  article-title: The hierarchy of the 3D genome
  publication-title: Mol Cell
– volume: 132
  start-page: 259
  year: 1996
  end-page: 75
  article-title: XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure
  publication-title: J Cell Biol
– volume: 20
  start-page: 566
  year: 2013
  end-page: 73
  article-title: Human inactive X chromosome is compacted through a PRC2‐independent SMCHD1‐HBiX1 pathway
  publication-title: Nat Struct Mol Biol
– volume: 24
  start-page: 70
  year: 2014
  end-page: 83
  article-title: Chromosome‐wide profiling of X‐chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum,
  publication-title: Genome Res
– volume: 110
  start-page: 6949
  year: 2013
  end-page: 54
  article-title: Bimodal quantitative relationships between histone modifications for X‐linked and autosomal loci
  publication-title: Proc Natl Acad Sci USA
– volume: 45
  start-page: 239
  year: 2013
  end-page: 41
  article-title: XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells
  publication-title: Nat Genet
– volume: 30
  start-page: 77
  year: 2002
  end-page: 80
  article-title: Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin
  publication-title: Nat Genet
– volume: 14
  start-page: 135
  year: 1962
  end-page: 45
  article-title: Sex chromatin and gene action in the mammalian X‐chromosome
  publication-title: Am J Hum Genet
– volume: 211
  start-page: 393
  year: 1981
  end-page: 6
  article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation
  publication-title: Science
– volume: 393
  start-page: 599
  year: 1998
  end-page: 601
  article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals
  publication-title: Nature
– volume: 18
  start-page: 3544
  year: 2009
  end-page: 52
  article-title: Inactive X chromosome‐specific reduction in placental DNA methylation
  publication-title: Hum Mol Genet
– volume: 487
  start-page: 254
  year: 2012
  end-page: 8
  article-title: Rsx is a metatherian RNA with Xist‐like properties in X‐chromosome inactivation
  publication-title: Nature
– volume: 5
  start-page: 391
  year: 1996
  end-page: 402
  article-title: X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE‐1 genes in human and mouse
  publication-title: Hum Mol Genet
– volume: 5
  start-page: 695
  year: 2000
  end-page: 705
  article-title: A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation
  publication-title: Mol Cell
– volume: 11
  start-page: 3157
  year: 2002
  end-page: 65
  article-title: Unbalanced X;autosome translocations provide evidence for sequence specificity in the association of XIST RNA with chromatin
  publication-title: Hum Mol Genet
– volume: 12
  start-page: 542
  year: 2011
  end-page: 53
  article-title: Gene silencing in X‐chromosome inactivation: advances in understanding facultative heterochromatin formation
  publication-title: Nat Rev Genet
– volume: 12
  start-page: 9333
  year: 1984
  end-page: 48
  article-title: Complete concordance between glucose‐6‐phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation
  publication-title: Nucleic Acids Res
– volume: 59
  start-page: 113
  year: 1999
  end-page: 21
  article-title: Human X inactivation center induces random X chromosome inactivation in male transgenic mice
  publication-title: Genomics
– volume: 141
  start-page: 872
  year: 2010
  end-page: 83
  article-title: Derivation of pre‐X inactivation human embryonic stem cells under physiological oxygen concentrations
  publication-title: Cell
– volume: 14
  start-page: R122
  year: 2013
  article-title: Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome
  publication-title: Genome Biol
– volume: 129
  start-page: 693
  year: 2007
  end-page: 706
  article-title: Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing
  publication-title: Cell
– volume: 24
  start-page: 64
  year: 2014
  end-page: 9
  article-title: Random replication of the inactive X chromosome
  publication-title: Genome Res
– volume: 434
  start-page: 325
  year: 2005
  end-page: 37
  article-title: The DNA sequence of the human X chromosome
  publication-title: Nature
– volume: 105
  start-page: 17055
  year: 2008
  end-page: 60
  article-title: Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1371
  year: 2011
  end-page: 83
  article-title: The inactive X chromosome adopts a unique three‐dimensional conformation that is dependent on Xist RNA
  publication-title: Genes Dev
– volume: 35
  start-page: 818
  year: 2013
  end-page: 28
  article-title: Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods
  publication-title: BioEssays
– ident: e_1_2_13_30_1
  doi: 10.1038/nature08161
– ident: e_1_2_13_81_1
  doi: 10.1073/pnas.1216449110
– ident: e_1_2_13_76_1
  doi: 10.1073/pnas.0807765105
– ident: e_1_2_13_42_1
  doi: 10.1038/nrg3035
– ident: e_1_2_13_107_1
  doi: 10.1126/science.1084274
– ident: e_1_2_13_62_1
  doi: 10.1093/nar/29.13.2699
– ident: e_1_2_13_97_1
  doi: 10.1038/349038a0
– ident: e_1_2_13_68_1
  doi: 10.1159/000014969
– ident: e_1_2_13_122_1
  doi: 10.1073/pnas.85.15.5605
– ident: e_1_2_13_74_1
  doi: 10.1007/s00335-011-9350-6
– ident: e_1_2_13_116_1
  doi: 10.1007/s004120100158
– ident: e_1_2_13_72_1
  doi: 10.1371/journal.pcbi.0020113
– ident: e_1_2_13_124_1
  doi: 10.1093/hmg/5.3.391
– ident: e_1_2_13_54_1
  doi: 10.1159/000130315
– ident: e_1_2_13_53_1
  doi: 10.1002/jcb.10429
– ident: e_1_2_13_86_1
  doi: 10.1101/gad.380906
– ident: e_1_2_13_108_1
  doi: 10.1016/j.devcel.2004.10.005
– ident: e_1_2_13_75_1
  doi: 10.1016/j.cell.2010.04.042
– ident: e_1_2_13_91_1
  doi: 10.1016/j.molcel.2013.02.011
– ident: e_1_2_13_67_1
  doi: 10.1038/368154a0
– ident: e_1_2_13_105_1
  doi: 10.1016/0092-8674(93)90419-Q
– ident: e_1_2_13_115_1
  doi: 10.1016/S0960-9822(00)00832-0
– ident: e_1_2_13_66_1
  doi: 10.1002/dvg.1020150609
– ident: e_1_2_13_39_1
  doi: 10.1038/nature12719
– ident: e_1_2_13_117_1
  doi: 10.1128/MCB.00997-08
– ident: e_1_2_13_3_1
  doi: 10.1073/pnas.1116763109
– ident: e_1_2_13_43_1
  doi: 10.1038/nsmb.2532
– ident: e_1_2_13_9_1
  doi: 10.1086/341605
– ident: e_1_2_13_64_1
  doi: 10.1083/jcb.153.4.773
– ident: e_1_2_13_120_1
  doi: 10.1073/pnas.87.11.4174
– ident: e_1_2_13_52_1
  doi: 10.1093/hmg/5.9.1345
– ident: e_1_2_13_78_1
  doi: 10.1371/journal.pgen.1003952
– ident: e_1_2_13_84_1
  doi: 10.1016/j.molcel.2014.01.002
– ident: e_1_2_13_38_1
  doi: 10.1159/000207514
– ident: e_1_2_13_36_1
  doi: 10.1038/nature12394
– ident: e_1_2_13_123_1
  doi: 10.1007/s00439-002-0676-8
– ident: e_1_2_13_17_1
  doi: 10.1073/pnas.77.11.6759
– ident: e_1_2_13_118_1
  doi: 10.1073/pnas.81.9.2806
– ident: e_1_2_13_77_1
  doi: 10.1016/j.devcel.2004.10.018
– ident: e_1_2_13_121_1
  doi: 10.1093/hmg/ddp299
– ident: e_1_2_13_83_1
  doi: 10.1073/pnas.1312951111
– ident: e_1_2_13_69_1
  doi: 10.1093/hmg/ddt513
– ident: e_1_2_13_71_1
  doi: 10.1073/pnas.97.12.6634
– ident: e_1_2_13_90_1
  doi: 10.1038/163676a0
– ident: e_1_2_13_73_1
  doi: 10.1101/gr.108563.110
– ident: e_1_2_13_85_1
  doi: 10.1016/j.cell.2011.06.026
– ident: e_1_2_13_100_1
  doi: 10.1101/gad.11.2.156
– ident: e_1_2_13_56_1
  doi: 10.1101/gr.158436.113
– ident: e_1_2_13_27_1
  doi: 10.1002/stem.1557
– ident: e_1_2_13_94_1
  doi: 10.1101/gad.633311
– ident: e_1_2_13_28_1
  doi: 10.1038/ng0398-212
– ident: e_1_2_13_31_1
  doi: 10.1086/507565
– ident: e_1_2_13_15_1
  doi: 10.1038/ng1705
– ident: e_1_2_13_92_1
  doi: 10.1002/bies.201300040
– ident: e_1_2_13_79_1
  doi: 10.1038/nature11082
– ident: e_1_2_13_103_1
  doi: 10.1159/000071576
– ident: e_1_2_13_47_1
  doi: 10.1093/nar/gkp860
– ident: e_1_2_13_25_1
  doi: 10.1007/s00412-011-0343-8
– ident: e_1_2_13_21_1
  doi: 10.1101/gr.103200.109
– volume: 14
  start-page: 135
  year: 1962
  ident: e_1_2_13_16_1
  article-title: Sex chromatin and gene action in the mammalian X‐chromosome
  publication-title: Am J Hum Genet
– ident: e_1_2_13_89_1
  doi: 10.1016/j.cell.2007.03.036
– ident: e_1_2_13_50_1
  doi: 10.1101/gr.161828.113
– ident: e_1_2_13_40_1
  doi: 10.1126/science.1237973
– ident: e_1_2_13_4_1
  doi: 10.1038/nature03440
– ident: e_1_2_13_109_1
  doi: 10.1074/jbc.C400493200
– ident: e_1_2_13_112_1
  doi: 10.1038/ng789
– ident: e_1_2_13_35_1
  doi: 10.1038/29522
– ident: e_1_2_13_51_1
  doi: 10.1007/BF00291539
– ident: e_1_2_13_102_1
  doi: 10.1038/ng787
– ident: e_1_2_13_37_1
  doi: 10.1016/S1097-2765(00)80248-8
– ident: e_1_2_13_18_1
  doi: 10.1038/nature03479
– ident: e_1_2_13_63_1
  doi: 10.1126/science.6164095
– ident: e_1_2_13_2_1
  doi: 10.1186/gb-2010-11-6-213
– ident: e_1_2_13_22_1
  doi: 10.1371/journal.pone.0031751
– ident: e_1_2_13_32_1
  doi: 10.1093/molbev/mst148
– ident: e_1_2_13_45_1
  doi: 10.1093/hmg/ddg229
– ident: e_1_2_13_11_1
  doi: 10.1038/ng.2530
– ident: e_1_2_13_46_1
  doi: 10.4161/epi.2.2.4612
– ident: e_1_2_13_111_1
  doi: 10.1016/S0960-9822(02)00660-7
– ident: e_1_2_13_55_1
  doi: 10.1038/ng1598
– ident: e_1_2_13_60_1
  doi: 10.1038/ng.142
– ident: e_1_2_13_10_1
  doi: 10.1016/j.ceb.2013.03.001
– ident: e_1_2_13_80_1
  doi: 10.1101/gr.133751.111
– ident: e_1_2_13_23_1
  doi: 10.1016/j.cell.2012.10.037
– ident: e_1_2_13_24_1
  doi: 10.1186/gb-2013-14-11-r122
– ident: e_1_2_13_99_1
  doi: 10.1038/379131a0
– volume: 90
  start-page: 379
  year: 1985
  ident: e_1_2_13_7_1
  article-title: X‐chromosome deletions in embryo‐derived (EK) cell lines associated with lack of X‐chromosome inactivation
  publication-title: J Embryol Exp Morphol
– ident: e_1_2_13_19_1
  doi: 10.1126/science.286.5441.964
– ident: e_1_2_13_101_1
  doi: 10.1016/S0092-8674(01)00598-0
– ident: e_1_2_13_106_1
  doi: 10.1006/dbio.1996.0333
– ident: e_1_2_13_49_1
  doi: 10.1073/pnas.48.5.756
– ident: e_1_2_13_93_1
  doi: 10.1038/nature11049
– ident: e_1_2_13_104_1
  doi: 10.1101/gr.092643.109
– ident: e_1_2_13_20_1
  doi: 10.1016/j.neuron.2013.10.051
– ident: e_1_2_13_34_1
  doi: 10.1093/hmg/ddr315
– ident: e_1_2_13_14_1
  doi: 10.1534/genetics.112.143743
– ident: e_1_2_13_44_1
  doi: 10.1038/31275
– ident: e_1_2_13_5_1
  doi: 10.1146/annurev.ge.17.120183.001103
– ident: e_1_2_13_6_1
  doi: 10.1016/j.cell.2010.04.010
– ident: e_1_2_13_8_1
  doi: 10.1038/7734
– ident: e_1_2_13_58_1
  doi: 10.1038/nature11171
– ident: e_1_2_13_61_1
  doi: 10.1007/s00439-011-1007-8
– ident: e_1_2_13_110_1
  doi: 10.1007/s00412-004-0325-1
– ident: e_1_2_13_29_1
  doi: 10.1017/S0016672300027531
– ident: e_1_2_13_70_1
  doi: 10.1093/hmg/ddt553
– ident: e_1_2_13_82_1
  doi: 10.1126/science.1163045
– ident: e_1_2_13_12_1
  doi: 10.1006/geno.1999.5861
– ident: e_1_2_13_41_1
  doi: 10.1093/hmg/11.25.3157
– ident: e_1_2_13_95_1
  doi: 10.1007/s00439-011-0994-9
– ident: e_1_2_13_57_1
  doi: 10.1101/gr.161919.113
– ident: e_1_2_13_87_1
  doi: 10.1073/pnas.0601069103
– ident: e_1_2_13_114_1
  doi: 10.1371/journal.pbio.0020171
– ident: e_1_2_13_59_1
  doi: 10.1016/j.devcel.2012.06.011
– ident: e_1_2_13_48_1
  doi: 10.1128/MCB.02258-05
– ident: e_1_2_13_96_1
  doi: 10.1016/j.cell.2011.12.029
– ident: e_1_2_13_65_1
  doi: 10.1038/11887
– ident: e_1_2_13_33_1
  doi: 10.1101/gr.112680.110
– ident: e_1_2_13_98_1
  doi: 10.1083/jcb.132.3.259
– ident: e_1_2_13_119_1
  doi: 10.1093/nar/12.24.9333
– ident: e_1_2_13_26_1
  doi: 10.1073/pnas.96.13.7364
– ident: e_1_2_13_13_1
  doi: 10.1073/pnas.96.12.6841
– ident: e_1_2_13_113_1
  doi: 10.1073/pnas.0408021101
– ident: e_1_2_13_88_1
  doi: 10.1016/j.cell.2014.01.042
– reference: 8636206 - J Cell Biol. 1996 Feb;132(3):259-75
– reference: 24462204 - Mol Cell. 2014 Jan 23;53(2):301-16
– reference: 21947602 - Chromosoma. 2012 Feb;121(1):71-8
– reference: 10431231 - Nat Genet. 1999 Aug;22(4):323-4
– reference: 2456574 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5605-9
– reference: 1985261 - Nature. 1991 Jan 3;349(6304):38-44
– reference: 22495304 - Nature. 2012 May 17;485(7398):381-5
– reference: 10841562 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6634-9
– reference: 24065775 - Genome Res. 2014 Jan;24(1):64-9
– reference: 3834036 - J Embryol Exp Morphol. 1985 Dec;90:379-88
– reference: 9009199 - Genes Dev. 1997 Jan 15;11(2):156-66
– reference: 21769671 - Mamm Genome. 2011 Oct;22(9-10):572-82
– reference: 17965609 - Epigenetics. 2007 Apr-Jun;2(2):114-8
– reference: 8343956 - Cell. 1993 Jul 30;74(2):281-9
– reference: 17512404 - Cell. 2007 May 18;129(4):693-706
– reference: 1093816 - Cytogenet Cell Genet. 1975;14(1):9-25
– reference: 23863942 - Nature. 2013 Aug 15;500(7462):296-300
– reference: 8954732 - Dev Biol. 1996 Dec 15;180(2):618-30
– reference: 11740497 - Nat Genet. 2002 Jan;30(1):77-80
– reference: 10409422 - Genomics. 1999 Jul 15;59(2):113-21
– reference: 15772651 - Nature. 2005 Mar 17;434(7031):325-37
– reference: 22722828 - Nature. 2012 Jul 12;487(7406):254-8
– reference: 22384067 - PLoS One. 2012;7(2):e31751
– reference: 19843608 - Nucleic Acids Res. 2009 Dec;37(22):7416-28
– reference: 20550932 - Cell. 2010 Jun 11;141(6):956-69
– reference: 24115267 - Stem Cells. 2014 Feb;32(2):377-90
– reference: 12023758 - Am J Hum Genet. 2002 Aug;71(2):286-93
– reference: 15525528 - Dev Cell. 2004 Nov;7(5):663-76
– reference: 24065774 - Genome Res. 2014 Jan;24(1):70-83
– reference: 8139659 - Nature. 1994 Mar 10;368(6467):154-6
– reference: 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23
– reference: 9678347 - Cytogenet Cell Genet. 1998;80(1-4):133-7
– reference: 24186870 - Hum Mol Genet. 2014 Mar 1;23(5):1224-36
– reference: 23023002 - Genetics. 2012 Dec;192(4):1281-93
– reference: 23832846 - Bioessays. 2013 Sep;35(9):818-28
– reference: 10542153 - Science. 1999 Oct 29;286(5441):964-7
– reference: 24581492 - Cell. 2014 Feb 27;156(5):907-19
– reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601
– reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3
– reference: 16948528 - PLoS Comput Biol. 2006 Sep 1;2(9):e113
– reference: 21791549 - Hum Mol Genet. 2011 Oct 15;20(20):3964-73
– reference: 14467629 - Am J Hum Genet. 1962 Jun;14:135-48
– reference: 20363980 - Genome Res. 2010 May;20(5):614-22
– reference: 10359800 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6841-6
– reference: 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37
– reference: 11114523 - Curr Biol. 2000 Nov 30;10(23):1531-4
– reference: 24023392 - Mol Biol Evol. 2013 Dec;30(12):2588-601
– reference: 12616531 - J Cell Biochem. 2003 Apr 1;88(5):923-31
– reference: 19586922 - Hum Mol Genet. 2009 Oct 1;18(19):3544-52
– reference: 6585829 - Proc Natl Acad Sci U S A. 1984 May;81(9):2806-10
– reference: 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93
– reference: 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78
– reference: 18936163 - Mol Cell Biol. 2009 Jan;29(1):150-6
– reference: 24469834 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2235-40
– reference: 7530612 - Dev Genet. 1994;15(6):504-14
– reference: 18971342 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17055-60
– reference: 15574503 - Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17450-5
– reference: 12444100 - Hum Mol Genet. 2002 Dec 1;11(25):3157-65
– reference: 23178118 - Cell. 2012 Nov 21;151(5):951-63
– reference: 6364959 - Annu Rev Genet. 1983;17:155-90
– reference: 16909387 - Am J Hum Genet. 2006 Sep;79(3):493-9
– reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
– reference: 23868195 - Genome Res. 2013 Oct;23(10):1590-600
– reference: 18974356 - Science. 2008 Oct 31;322(5902):750-6
– reference: 20471072 - Cell. 2010 May 28;141(5):872-83
– reference: 22392987 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5346-51
– reference: 8538762 - Nature. 1996 Jan 11;379(6561):131-7
– reference: 21553122 - Hum Genet. 2011 Aug;130(2):175-85
– reference: 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53
– reference: 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74
– reference: 21282478 - Genome Res. 2011 Mar;21(3):402-9
– reference: 24411735 - Neuron. 2014 Jan 8;81(1):103-19
– reference: 18425126 - Nat Genet. 2008 May;40(5):663-9
– reference: 14476104 - Proc Natl Acad Sci U S A. 1962 May 15;48:756-63
– reference: 15669143 - Dev Cell. 2005 Jan;8(1):31-42
– reference: 16341221 - Nat Genet. 2006 Jan;38(1):47-53
– reference: 15616869 - Chromosoma. 2004 Dec;113(6):324-35
– reference: 10192391 - Nat Genet. 1999 Apr;21(4):400-4
– reference: 21765457 - Nat Rev Genet. 2011 Aug;12(8):542-53
– reference: 22325148 - Cell. 2012 Feb 17;148(4):664-78
– reference: 15252442 - PLoS Biol. 2004 Jul;2(7):E171
– reference: 24278033 - PLoS Genet. 2013 Nov;9(11):e1003952
– reference: 11734999 - Chromosoma. 2001 Nov;110(6):411-20
– reference: 22948768 - Genome Res. 2012 Oct;22(10):1864-76
– reference: 9723615 - Nature. 1998 Aug 20;394(6695):776-80
– reference: 6164095 - Science. 1981 Jan 23;211(4480):393-6
– reference: 21729784 - Cell. 2011 Jul 8;146(1):119-33
– reference: 16007088 - Nat Genet. 2005 Aug;37(8):853-62
– reference: 23334669 - Nat Genet. 2013 Mar;45(3):239-41
– reference: 6514579 - Nucleic Acids Res. 1984 Dec 21;12(24):9333-48
– reference: 11935340 - Hum Genet. 2002 Mar;110(3):271-8
– reference: 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83
– reference: 20573260 - Genome Biol. 2010;11(6):213
– reference: 6682404 - Hum Genet. 1983;63(2):171-4
– reference: 3209066 - Genet Res. 1988 Oct;52(2):151-4
– reference: 19581487 - Genome Res. 2009 Aug;19(8):1361-73
– reference: 24176135 - Genome Biol. 2013;14(11):R122
– reference: 23564346 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6949-54
– reference: 12649488 - Science. 2003 Apr 4;300(5616):131-5
– reference: 11747809 - Cell. 2001 Dec 14;107(6):727-38
– reference: 6935682 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6759-63
– reference: 23828888 - Science. 2013 Aug 16;341(6147):1237973
– reference: 8852665 - Hum Mol Genet. 1996 Mar;5(3):391-401
– reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4
– reference: 16738309 - Mol Cell Biol. 2006 Jun;26(12):4410-20
– reference: 23578369 - Curr Opin Cell Biol. 2013 Jun;25(3):314-21
– reference: 19617692 - Cytogenet Genome Res. 2009;125(1):19-25
– reference: 21862626 - Genome Res. 2011 Oct;21(10):1592-600
– reference: 10882105 - Mol Cell. 2000 Apr;5(4):695-705
– reference: 1693431 - Proc Natl Acad Sci U S A. 1990 Jun;87(11):4174-8
– reference: 11433014 - Nucleic Acids Res. 2001 Jul 1;29(13):2699-705
– reference: 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79
– reference: 23542155 - Nat Struct Mol Biol. 2013 May;20(5):566-73
– reference: 19571810 - Nature. 2009 Jul 30;460(7255):647-51
– reference: 18120749 - Nature. 1949 Apr 30;163(4148):676
– reference: 10377420 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364-9
– reference: 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5
– reference: 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51
– reference: 11352938 - J Cell Biol. 2001 May 14;153(4):773-84
– reference: 21597963 - Hum Genet. 2011 Aug;130(2):187-201
– reference: 22495300 - Nature. 2012 May 17;485(7398):376-80
– reference: 24162848 - Nature. 2013 Dec 19;504(7480):465-9
– reference: 11740495 - Nat Genet. 2002 Jan;30(1):73-6
SSID ssj0009624
Score 2.403987
SecondaryResourceType review_article
Snippet In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the...
In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the...
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 746
SubjectTerms allelic imbalance
Animals
boundary elements
Chromosomes
Chromosomes, Human, X - genetics
Chromosomes, Human, X - ultrastructure
DNA Methylation
dosage compensation
epigenetic marks
Evolution, Molecular
Gene Expression
Genes
Genes, X-Linked
Humans
Inactivation
Prospects & Overviews
RNA-seq
Topology
waystations
X Chromosome Inactivation
XIST
Title Variable escape from X-chromosome inactivation: Identifying factors that tip the scales towards expression
URI https://api.istex.fr/ark:/67375/WNG-9F89141J-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201400032
https://www.ncbi.nlm.nih.gov/pubmed/24913292
https://www.proquest.com/docview/1553146842
https://www.proquest.com/docview/1547542615
https://www.proquest.com/docview/1566832319
https://pubmed.ncbi.nlm.nih.gov/PMC4143967
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgCIkL35RAqYyE4JR24zhxzA0QS1WJCiEKe7NsZ6JddclWTVYqnPgJ_EZ-CTNxNu3yKcEt2UyyG-94_CZ584axRyNrtbVCxqnNbSxLrWIHIGIvSmfTwqW2q_B-fZDvHcr9STY5V8Uf9CGGB240M7p4TRPcumb3TDTUUSYpKEFAx6QgTIQtQkVvz_SjdN51tcU8I4sx0VAr1caR2F0_fW1VukQDfPoryPkzc_I8ou2WpPE1Zlc3E5goRzvL1u34zz_oPP7P3V5nV3u8yp8FB7vBLkB9k10OHSw_3WLz95hrU_UVh4aoVJzKVfjk25evfkpEv2bxEfispuqJ8Oz3KQ-lwV15Fe-7_fB2alvezo5xAzheaA74WUfobTic9lzd-jY7HL9892Iv7hs4xD5TmOT6UaHSCkOqKzE0JABeeS9UWVggXCURS4EuvAPhKue9EwqjbQJZ7hCIiSJP77CNelHDXcZJowaKCgFrVUo01COvQVQutx6XjhQiFq_-QON7dXNqsjE3QZdZGBpBM4xgxJ4M9sdB1-O3lo87fxjM7MkRseFUZj4cvDJ6XOhEJvtmHLGtlcOYPhA0htoyUXWbxOs8HA7jFKb3MraGxZJsJPUhRmz5J5s8x-CLATNim8EHhx-EGXSSCo3foNa8czAgCfH1I_Vs2kmJS4TLOlcRE53z_WUozHNMUYa9e_9y0n12hbYDhXKLbbQnS3iAsK512-yikG-2uwn8HTMBSLU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVggulDcuBRYJwcltvH4uN0CEUNocUAu9rXbXYyVqcKrGkQonfgK_kV_CzK7tEp4S3BJ77MSb2dnv28x8w9ijgdZSa5GEsc50mJQyDw2ACK0ojY4LE2tX4b0_zkaHye5R2mUTUi2M14foN9xoZrh4TROcNqR3zlVDDVFJQQwBPROj8Dq19Xas6u25gpTMXF9bZBppiFQj73QbB2Jn9fqVdWmdhvjsV6Dz59zJ7zGtW5SGG8x0j-NzUY63l43Ztp9-UHr8r-e9yq60kJU_8z52jV2A-jq76JtYfrzBZu-QblMBFocFZVNxqljhR18_f7ETyvVbzD8An9ZUQOG3f59yXx3sKqx42_CHNxPd8GZ6gi-A441mgMdcTu-Cw1mbrlvfZIfDlwcvRmHbwyG0aY481w6KPK4wqpoSo0MEYHNrRV4WGghaJQinQBbWgDCVsdaIHANuBGlmEIuJIotvsbV6XsMdxkmmBooKMWtVJmgoB1aCqEymLa4eMQQs7H5BZVuBc-qzMVNemlkoGkHVj2DAnvT2J17a47eWj51D9Gb69JgS4vJUvR-_UnJYyCiJdtUwYFudx6g2FiwUdWaiArcE7_OwP42zmP6a0TXMl2STUCtihJd_sskyjL8YMwN22zth_4WQREexkPgJ-Yp79gakIr56pp5OnJp4gohZZnnAhPO-vwyFeo4spX-3-S8XPWCXRgf7e2rv9fjNXXaZjvuMyi221pwu4R6ivMbcd_P4G9PRS_k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKxAX3pSUAkZCcEqbOE4ccwNKKAVWCFHYm2U7jnbVbXbVzUqFEz-B38gvYcbJpl2eEtzyGCexMx5_k8x8Q8iDSGupNeNhojMd8lKK0DjHQstKo5PcJNpneL8ZZHsHfH-YDs9k8bf8EP0HN5wZ3l7jBJ-V1c4paahBT5KhgwCKCUZ4nWdRjnq9--6UQEpmvqwtOBppCJ6GWNI2Rmxntf3KsrSOI3zyK8z5c-jkWUjr16TiMtHL3rShKIfbi8Zs288_ED3-T3evkEsdYKVPWg27Ss65-ho535aw_HSdTD6As43pV9TNMZaKYr4KHX778tWOMNJvPj1ydFxj-kT78fcxbXODfX4V7cr90GakG9qMZ7DhKFxo4uCYj-idU3fSBevWN8hB8fz9s72wq-AQ2lSAl2ujXCQV2FRTgm2InbPCWibKXDsEVhzAlJO5NY6ZylhrmABzG7s0M4DEWJ4lN8laPa3dLUKRpMblFSDWquQgKCMrHatMpi2sHYkLSLh8gcp29OZYZWOiWmJmpnAEVT-CAXnUy89aYo_fSj70-tCL6eNDDIcTqfo4eKFkkcuYx_uqCMjWUmFUZwnmCusyYXobh-vc70_DHMYfM7p20wXKcCxEDODyTzJZBtYXLGZANlod7B8IXOg4YRLuIFa0sxdADvHVM_V45LnEOeBlmYmAMK98fxkK9RR8lH5v818a3SMX3u4W6vXLwavb5CIebsMpt8hac7xwdwDiNeaun8XfAdi3SrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+escape+from+X-chromosome+inactivation%3A+Identifying+factors+that+tip+the+scales+towards+expression&rft.jtitle=BioEssays&rft.au=Peeters%2C+Samantha+B.&rft.au=Cotton%2C+Allison+M.&rft.au=Brown%2C+Carolyn+J.&rft.date=2014-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=36&rft.issue=8&rft.spage=746&rft.epage=756&rft_id=info:doi/10.1002%2Fbies.201400032&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9F89141J_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon