Variable escape from X-chromosome inactivation: Identifying factors that tip the scales towards expression
In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in express...
Saved in:
Published in | BioEssays Vol. 36; no. 8; pp. 746 - 756 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three‐dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Incomplete transcriptional silencing of X‐chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome. |
---|---|
AbstractList | In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono‐allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three‐dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Incomplete transcriptional silencing of X‐chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome. In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. Incomplete transcriptional silencing of X-chromosome inactivation (XCI) results in some genes being variably expressed from the inactive X, with differences seen between females and between tissues. The variable expression likely reflects the impact of factors contributing to XCI, including DNA sequences, chromatin features, and 3D architecture of the chromosome. In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome. [PUBLICATION ABSTRACT] |
Author | Peeters, Samantha B. Brown, Carolyn J. Cotton, Allison M. |
Author_xml | – sequence: 1 givenname: Samantha B. surname: Peeters fullname: Peeters, Samantha B. organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada – sequence: 2 givenname: Allison M. surname: Cotton fullname: Cotton, Allison M. organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada – sequence: 3 givenname: Carolyn J. surname: Brown fullname: Brown, Carolyn J. email: Carolyn J. Brown, cbrown@mail.ubc.ca organization: Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, BC, Vancouver, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24913292$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFK0cUiQuXLPb4IwkHpFJ120UVHPi8WY4z6XrJxsHOtt1_j9stq1IJwWlsz_O-HnvmgOz1vkdCnjM6ZZTC69phnAJlglLK4RGZMAksZ2VR7pEJBSXzCkSxTw5iXCakUiCekH0QFeNQwYQsv5rgTN1hhtGaAbM2-FX2PbeLFH30K8xcb-zoLs3ofP8mmzfYj67duP4ia1PCh5iNCzNmoxvSArNk02E681cmNDHD6yFgjEn7lDxuTRfx2V08JF9mJ5-Pz_Lzj6fz46Pz3MoCILe0LHgreVk3AiRDtIW1UDSlQZb2QjKJVWlrhLqtra2hME3DUKoapIJS8UPydus7rOsVNjbVG0ynh-BWJmy0N07_mendQl_4Sy2Y4JUqksGrO4Pgf64xjnrlosWuMz36ddRMKlVy4Kz6D1QUUoBiMqEvH6BLvw59-olESc6EKgUk6sX94ndV_-5YAqZbwAYfY8B2hzCqb0ZC34yE3o1EEogHAuvG22amx7vu77JqK7tyHW7-cYl-Nz_5dF-bb7Uujni905rwQ6fvLaT-9uFUV7OyYoK91zP-Cx8h27M |
CODEN | BIOEEJ |
CitedBy_id | crossref_primary_10_1016_j_tins_2023_09_007 crossref_primary_10_1073_pnas_1520113113 crossref_primary_10_1093_hmg_ddu564 crossref_primary_10_1186_s13293_023_00544_5 crossref_primary_10_1002_evan_21424 crossref_primary_10_3390_genes13050827 crossref_primary_10_1007_s12035_020_01981_8 crossref_primary_10_3390_biom13030543 crossref_primary_10_1038_s41598_018_23063_5 crossref_primary_10_1016_j_semcdb_2016_01_024 crossref_primary_10_1007_s13770_017_0096_4 crossref_primary_10_1038_s41467_022_32273_5 crossref_primary_10_1186_s13072_021_00428_1 crossref_primary_10_1098_rstb_2016_0355 crossref_primary_10_1007_s00018_021_03945_0 crossref_primary_10_1016_j_esmoop_2023_101204 crossref_primary_10_1186_s12863_021_00978_z crossref_primary_10_1186_s12864_019_5507_6 crossref_primary_10_3389_fgene_2018_00025 crossref_primary_10_1016_j_placenta_2018_03_005 crossref_primary_10_1038_s41467_018_05714_3 crossref_primary_10_3390_ijms232012288 crossref_primary_10_1016_j_jpsychires_2015_06_021 crossref_primary_10_1016_j_semcdb_2016_04_007 crossref_primary_10_1038_s41467_022_30961_w crossref_primary_10_1016_j_ajhg_2015_12_015 crossref_primary_10_1038_srep45460 crossref_primary_10_1002_bies_202200105 crossref_primary_10_1155_2016_3181676 crossref_primary_10_1002_bies_201800073 crossref_primary_10_1016_j_biochi_2017_12_008 crossref_primary_10_1016_j_xgen_2024_100628 crossref_primary_10_1016_j_tibs_2015_12_003 crossref_primary_10_1016_j_pneurobio_2022_102353 crossref_primary_10_1038_s41568_021_00348_y crossref_primary_10_1242_dev_200864 crossref_primary_10_1007_s00702_021_02403_2 crossref_primary_10_1038_s41598_018_28356_3 crossref_primary_10_1038_s41574_022_00697_0 crossref_primary_10_1186_s13293_017_0157_3 crossref_primary_10_1007_s00281_022_00969_x crossref_primary_10_3390_jpm12020175 crossref_primary_10_1016_j_cell_2015_11_035 crossref_primary_10_1186_s12974_021_02120_3 crossref_primary_10_1007_s12041_015_0566_1 crossref_primary_10_15252_embj_2021109457 crossref_primary_10_1038_srep37324 crossref_primary_10_1186_s13059_016_1136_4 crossref_primary_10_3389_fimmu_2021_756262 crossref_primary_10_1186_s13293_018_0213_7 crossref_primary_10_1371_journal_pgen_1006890 crossref_primary_10_1016_j_ejmg_2018_06_010 crossref_primary_10_1038_nature18589 crossref_primary_10_1080_09513590_2020_1865907 crossref_primary_10_1016_j_ceb_2017_01_007 crossref_primary_10_1016_j_ejmg_2022_104496 crossref_primary_10_1016_j_jaut_2023_102992 crossref_primary_10_1093_molehr_gaab001 crossref_primary_10_2174_2589977512666200220122650 crossref_primary_10_1111_odi_12825 crossref_primary_10_1186_s10020_020_00256_1 crossref_primary_10_1186_s12859_022_04721_y crossref_primary_10_1038_nrg_2015_2 crossref_primary_10_1016_j_tem_2023_07_003 crossref_primary_10_1038_s41467_019_13266_3 crossref_primary_10_1161_STROKEAHA_122_039138 crossref_primary_10_1515_revneuro_2023_0108 crossref_primary_10_1371_journal_pgen_1007692 crossref_primary_10_1242_dev_166462 crossref_primary_10_1016_j_semcdb_2016_04_013 crossref_primary_10_1007_s10048_020_00616_3 |
Cites_doi | 10.1038/nature08161 10.1073/pnas.1216449110 10.1073/pnas.0807765105 10.1038/nrg3035 10.1126/science.1084274 10.1093/nar/29.13.2699 10.1038/349038a0 10.1159/000014969 10.1073/pnas.85.15.5605 10.1007/s00335-011-9350-6 10.1007/s004120100158 10.1371/journal.pcbi.0020113 10.1093/hmg/5.3.391 10.1159/000130315 10.1002/jcb.10429 10.1101/gad.380906 10.1016/j.devcel.2004.10.005 10.1016/j.cell.2010.04.042 10.1016/j.molcel.2013.02.011 10.1038/368154a0 10.1016/0092-8674(93)90419-Q 10.1016/S0960-9822(00)00832-0 10.1002/dvg.1020150609 10.1038/nature12719 10.1128/MCB.00997-08 10.1073/pnas.1116763109 10.1038/nsmb.2532 10.1086/341605 10.1083/jcb.153.4.773 10.1073/pnas.87.11.4174 10.1093/hmg/5.9.1345 10.1371/journal.pgen.1003952 10.1016/j.molcel.2014.01.002 10.1159/000207514 10.1038/nature12394 10.1007/s00439-002-0676-8 10.1073/pnas.77.11.6759 10.1073/pnas.81.9.2806 10.1016/j.devcel.2004.10.018 10.1093/hmg/ddp299 10.1073/pnas.1312951111 10.1093/hmg/ddt513 10.1073/pnas.97.12.6634 10.1038/163676a0 10.1101/gr.108563.110 10.1016/j.cell.2011.06.026 10.1101/gad.11.2.156 10.1101/gr.158436.113 10.1002/stem.1557 10.1101/gad.633311 10.1038/ng0398-212 10.1086/507565 10.1038/ng1705 10.1002/bies.201300040 10.1038/nature11082 10.1159/000071576 10.1093/nar/gkp860 10.1007/s00412-011-0343-8 10.1101/gr.103200.109 10.1016/j.cell.2007.03.036 10.1101/gr.161828.113 10.1126/science.1237973 10.1038/nature03440 10.1074/jbc.C400493200 10.1038/ng789 10.1038/29522 10.1007/BF00291539 10.1038/ng787 10.1016/S1097-2765(00)80248-8 10.1038/nature03479 10.1126/science.6164095 10.1186/gb-2010-11-6-213 10.1371/journal.pone.0031751 10.1093/molbev/mst148 10.1093/hmg/ddg229 10.1038/ng.2530 10.4161/epi.2.2.4612 10.1016/S0960-9822(02)00660-7 10.1038/ng1598 10.1038/ng.142 10.1016/j.ceb.2013.03.001 10.1101/gr.133751.111 10.1016/j.cell.2012.10.037 10.1186/gb-2013-14-11-r122 10.1038/379131a0 10.1126/science.286.5441.964 10.1016/S0092-8674(01)00598-0 10.1006/dbio.1996.0333 10.1073/pnas.48.5.756 10.1038/nature11049 10.1101/gr.092643.109 10.1016/j.neuron.2013.10.051 10.1093/hmg/ddr315 10.1534/genetics.112.143743 10.1038/31275 10.1146/annurev.ge.17.120183.001103 10.1016/j.cell.2010.04.010 10.1038/7734 10.1038/nature11171 10.1007/s00439-011-1007-8 10.1007/s00412-004-0325-1 10.1017/S0016672300027531 10.1093/hmg/ddt553 10.1126/science.1163045 10.1006/geno.1999.5861 10.1093/hmg/11.25.3157 10.1007/s00439-011-0994-9 10.1101/gr.161919.113 10.1073/pnas.0601069103 10.1371/journal.pbio.0020171 10.1016/j.devcel.2012.06.011 10.1128/MCB.02258-05 10.1016/j.cell.2011.12.029 10.1038/11887 10.1101/gr.112680.110 10.1083/jcb.132.3.259 10.1093/nar/12.24.9333 10.1073/pnas.96.13.7364 10.1073/pnas.96.12.6841 10.1073/pnas.0408021101 10.1016/j.cell.2014.01.042 |
ContentType | Journal Article |
Copyright | 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. 2014 WILEY Periodicals, Inc. 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. 2014 |
Copyright_xml | – notice: 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. – notice: 2014 WILEY Periodicals, Inc. – notice: 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. 2014 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1002/bies.201400032 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-1878 |
EndPage | 756 |
ExternalDocumentID | PMC4143967 3402333161 24913292 10_1002_bies_201400032 BIES201400032 ark_67375_WNG_9F89141J_F |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR funderid: MOP‐13690; MOP‐119586 – fundername: Canadian Institutes of Health Research grantid: MOP-13690 – fundername: Canadian Institutes of Health Research grantid: MOP-119586 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT 24P AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5722-c0873f538bd4251eec7cc27d8ae12514515e98cbe2bfbccb27add1e56b2562863 |
IEDL.DBID | DR2 |
ISSN | 0265-9247 1521-1878 |
IngestDate | Thu Aug 21 18:29:40 EDT 2025 Fri Jul 11 07:37:05 EDT 2025 Fri Jul 11 15:01:24 EDT 2025 Fri Jul 25 10:39:03 EDT 2025 Thu Apr 03 07:10:16 EDT 2025 Tue Jul 01 03:22:31 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Jan 22 16:58:34 EST 2025 Wed Oct 30 09:56:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | waystations RNA-seq boundary elements XIST allelic imbalance dosage compensation epigenetic marks |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2014 The Authors. Bioessays published by WILEY Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5722-c0873f538bd4251eec7cc27d8ae12514515e98cbe2bfbccb27add1e56b2562863 |
Notes | CIHR - No. MOP-13690; No. MOP-119586 ark:/67375/WNG-9F89141J-F ArticleID:BIES201400032 istex:295470FE723BE550463B47816251830B979266FA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201400032 |
PMID | 24913292 |
PQID | 1553146842 |
PQPubID | 37030 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143967 proquest_miscellaneous_1566832319 proquest_miscellaneous_1547542615 proquest_journals_1553146842 pubmed_primary_24913292 crossref_primary_10_1002_bies_201400032 crossref_citationtrail_10_1002_bies_201400032 wiley_primary_10_1002_bies_201400032_BIES201400032 istex_primary_ark_67375_WNG_9F89141J_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge – name: Oxford, UK |
PublicationTitle | BioEssays |
PublicationTitleAlternate | BioEssays |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-5. Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, et al. 2013. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol Biol Evol 30: 2588-601. Berletch JB, Yang F, Disteche CM. 2010. Escape from X inactivation in mice and humans. Genome Biol 11: 213. Wang X, Douglas KC, Vandeberg JL, Clark AG, et al. 2014. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24: 70-83. Jeppesen P, Turner B. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9. Lopes AM, Arnold-Croop SE, Amorim A, Carrel L. 2011. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 22: 572-82. Nguyen DK, Disteche CM. 2006. Dosage compensation of the active X chromosome in mammals. Nat Genet 38: 47-53. Yang F, Babak T, Shendure J, Disteche CM. 2010. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20: 614-22. Gartler SM, Riggs AD. 1983. Mammalian X-chromosome inactivation. Ann Rev Genet 17: 155-90. Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, et al. 2006. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79: 493-9. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 38-44. Changolkar LN, Pehrson JR. 2006. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26: 4410-20. Smith KP, Byron M, Clemson CM, Lawrence JB. 2004. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113: 324-35. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973. Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53. Heard E, Mongelard F, Arnaud D, Chureau C, et al. 1999. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci USA 96: 6841-6. Hansen RS, Canfield TK, Fjeld AD, Gartler SM. 1996. Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345-53. Cotton AM, Lam L, Affleck JG, Wilson IM, et al. 2011. Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130: 187-201. Dupont C, Gribnau J. 2013. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 25: 314-21. Csankovszki G, Panning B, Bates B, Pehrson JR, et al. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22: 323-4. Cotton AM, Avila L, Penaherrera MS, Affleck JG, et al. 2009. Inactive X chromosome-specific reduction in placental DNA methylation. Hum Mol Genet 18: 3544-52. Clemson CM, McNeil JA, Willard HF, Lawrence JB. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259-75. Khalil AM, Driscoll DJ. 2007. Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2: 114-8. Zhao J, Sun BK, Erwin JA, Song JJ, et al. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322: 750-6. Boggs BA, Cheung P, Heard E, Spector DL, et al. 2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30: 73-6. Zhang LF, Huynh KD, Lee JT. 2007. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129: 693-706. Hansen RS, Gartler SM. 1990. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci USA 87: 4174-8. Clemson CM, Hall LL, Byron M, McNeil J, et al. 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103: 7688-93. Vallot C, Huret C, Lesecque Y, Resch A, et al. 2013. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45: 239-41. Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. 2003. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem 88: 923-31. Lyon MF. 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-7. Chow JC, Ciaudo C, Fazzari MJ, Mise N, et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-69. Sadreyev RI, Yildirim E, Pinter SF, Lee JT. 2013. Bimodal quantitative relationships between histone modifications for X-linked and autosomal loci. Proc Natl Acad Sci USA 110: 6949-54. Rastan S, Robertson EJ. 1985. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90: 379-88. Migeon BR, Lee CH, Chowdury AK, Carpenter H. 2002. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71: 286-93. Csankovszki G, Nagy A, Jaenisch R. 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153: 773-83. Brown S, Rastan S. 1988. Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52: 151-4. Goto Y, Gomez M, Brockdorff N, Feil R. 2002. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet Genome Res 99: 66-74. Jiang J, Jing Y, Cost GJ, Chiang JC, et al. 2013. Translating dosage compensation to trisomy 21. Nature 500: 296-300. Perche P-Y, Vourc'h C, Konecny L, Souchier C, et al. 2000. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531-4. Hall LL, Carone DM, Gomez AV, Kolpa HJ, et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156: 907-19. Kalantry S, Purushothaman S, Bowen RB, Starmer J, et al. 2009. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460: 647-51. Goto Y, Kimura H. 2009. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37: 7416-28. Peters AH, Mermoud JE, O'Carroll D, Pagani M, et al. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30: 77-80. Tavares L, Dimitrova E, Oxley D, Webster J, et al. 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-78. Lee JT, Davidow LS, Warshawsky D. 1999. Tsix, a gene antisense to Xist at the X-inactivation center. Nat Genet 21: 400-4. Jegalian K, Page DC. 1998. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394: 776-80. Jeon Y, Lee JT. 2011. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146: 119-33. Li SM, Valo Z, Wang J, Gao H, et al. 2012. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7: e31751. Dixon JR, Selvaraj S, Yue F, Kim A, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-80. Pessia E, Makino T, Bailly-Bechet M, McLysaght A, et al. 2012. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 109: 5346-51. Li N, Carrel L. 2008. Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105: 17055-60. Gibcus JH, Dekker J. 2013. The hierarchy of the 3D genome. Mol Cell 49: 773-82. Riggs AD. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14: 9-25. Marks H, Chow JC, Denissov S, Francoijs KJ, et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19: 1361-73. Cerase A, Smeets D, Tang YA, Gdula M, et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA 111: 2235-40. Horvath LM, Li N, Carrel L. 2013. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet 9: e1003952. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, et al. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-83. Ginno PA, Lim YW, Lott PL, Korf I, et al. 2013. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23: 1590-600. Yang C, McLeod AJ, Cotton AM, de Leeuw CN, et al. 2012. Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 192: 1281-93. Lyon MF. 1962. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135-45. Chadwick BP, Willard HF. 2003. Chromatin of the Barr body: histone and non-histo 2010; 11 2012; 121 2012; 485 2012; 487 2006; 38 2002; 12 2004; 7 2002; 11 2002; 99 1999; 286 2014; 24 1975; 14 2008; 105 1998; 80 2004; 2 1983; 17 1998; 393 2014; 23 2013; 9 1998; 394 1998; 18 2010; 20 2006; 20 2000; 10 1999; 59 2006; 26 2000; 97 1949; 163 1985; 90 1962; 48 1996; 132 2007; 2 2013; 110 1988; 85 1991; 349 1996; 379 2009; 19 2012; 23 2012; 22 2009; 125 2009; 18 2013; 504 2013; 500 1962; 14 1999; 22 1999; 21 2013; 341 2001; 29 2011; 130 2012; 109 2014; 156 2011; 146 2001; 153 2004; 279 1981; 211 2005; 8 2012; 192 2002; 71 1994; 15 2009; 460 2008; 40 2014; 32 2006; 103 2013; 25 2006; 79 2000; 5 2002; 110 2013; 23 2013; 20 2010; 141 2011; 12 2001; 107 2003; 12 1990; 87 2013; 14 1997; 11 1996; 180 1984; 12 1993; 74 2011; 20 2011; 22 2011; 21 1983; 63 1977; 77 1999; 96 2011; 25 2005; 37 1996; 5 2003; 88 2014; 53 2004; 101 2007; 129 1984; 81 2013; 49 2002; 30 2013; 45 2005; 434 1988; 52 2006; 2 2008; 322 2014; 111 2012; 148 2009; 29 2012; 151 2001; 110 2014; 81 1994; 368 2004; 113 2013; 35 2013; 30 2012; 7 2003; 300 2009; 37 Lyon MF (e_1_2_13_16_1) 1962; 14 e_1_2_13_120_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_121_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 Rastan S (e_1_2_13_7_1) 1985; 90 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_35_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 10409422 - Genomics. 1999 Jul 15;59(2):113-21 15772651 - Nature. 2005 Mar 17;434(7031):325-37 8343956 - Cell. 1993 Jul 30;74(2):281-9 24278033 - PLoS Genet. 2013 Nov;9(11):e1003952 21769671 - Mamm Genome. 2011 Oct;22(9-10):572-82 3834036 - J Embryol Exp Morphol. 1985 Dec;90:379-88 7530612 - Dev Genet. 1994;15(6):504-14 11747809 - Cell. 2001 Dec 14;107(6):727-38 6364959 - Annu Rev Genet. 1983;17:155-90 10431231 - Nat Genet. 1999 Aug;22(4):323-4 23863942 - Nature. 2013 Aug 15;500(7462):296-300 10192391 - Nat Genet. 1999 Apr;21(4):400-4 23542155 - Nat Struct Mol Biol. 2013 May;20(5):566-73 18936163 - Mol Cell Biol. 2009 Jan;29(1):150-6 14476104 - Proc Natl Acad Sci U S A. 1962 May 15;48:756-63 23023002 - Genetics. 2012 Dec;192(4):1281-93 16007088 - Nat Genet. 2005 Aug;37(8):853-62 14467629 - Am J Hum Genet. 1962 Jun;14:135-48 23828888 - Science. 2013 Aug 16;341(6147):1237973 23868195 - Genome Res. 2013 Oct;23(10):1590-600 22495300 - Nature. 2012 May 17;485(7398):376-80 1693431 - Proc Natl Acad Sci U S A. 1990 Jun;87(11):4174-8 10377420 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364-9 19617692 - Cytogenet Genome Res. 2009;125(1):19-25 23832846 - Bioessays. 2013 Sep;35(9):818-28 11740495 - Nat Genet. 2002 Jan;30(1):73-6 18120749 - Nature. 1949 Apr 30;163(4148):676 24411735 - Neuron. 2014 Jan 8;81(1):103-19 21553122 - Hum Genet. 2011 Aug;130(2):175-85 24023392 - Mol Biol Evol. 2013 Dec;30(12):2588-601 21597963 - Hum Genet. 2011 Aug;130(2):187-201 8954732 - Dev Biol. 1996 Dec 15;180(2):618-30 11433014 - Nucleic Acids Res. 2001 Jul 1;29(13):2699-705 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93 24462204 - Mol Cell. 2014 Jan 23;53(2):301-16 10359800 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6841-6 19843608 - Nucleic Acids Res. 2009 Dec;37(22):7416-28 6164095 - Science. 1981 Jan 23;211(4480):393-6 12023758 - Am J Hum Genet. 2002 Aug;71(2):286-93 20471072 - Cell. 2010 May 28;141(5):872-83 21947602 - Chromosoma. 2012 Feb;121(1):71-8 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53 16341221 - Nat Genet. 2006 Jan;38(1):47-53 6514579 - Nucleic Acids Res. 1984 Dec 21;12(24):9333-48 24115267 - Stem Cells. 2014 Feb;32(2):377-90 12444100 - Hum Mol Genet. 2002 Dec 1;11(25):3157-65 15574503 - Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17450-5 15772666 - Nature. 2005 Mar 17;434(7031):400-4 15616869 - Chromosoma. 2004 Dec;113(6):324-35 2456574 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5605-9 19586922 - Hum Mol Genet. 2009 Oct 1;18(19):3544-52 22722828 - Nature. 2012 Jul 12;487(7406):254-8 21791549 - Hum Mol Genet. 2011 Oct 15;20(20):3964-73 9678347 - Cytogenet Cell Genet. 1998;80(1-4):133-7 24176135 - Genome Biol. 2013;14(11):R122 18425126 - Nat Genet. 2008 May;40(5):663-9 18971342 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17055-60 21729784 - Cell. 2011 Jul 8;146(1):119-33 9500539 - Nat Genet. 1998 Mar;18(3):212-3 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78 23564346 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6949-54 10542153 - Science. 1999 Oct 29;286(5441):964-7 19581487 - Genome Res. 2009 Aug;19(8):1361-73 20363980 - Genome Res. 2010 May;20(5):614-22 24186870 - Hum Mol Genet. 2014 Mar 1;23(5):1224-36 18974356 - Science. 2008 Oct 31;322(5902):750-6 17965609 - Epigenetics. 2007 Apr-Jun;2(2):114-8 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 15525528 - Dev Cell. 2004 Nov;7(5):663-76 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37 6935682 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6759-63 11935340 - Hum Genet. 2002 Mar;110(3):271-8 6682404 - Hum Genet. 1983;63(2):171-4 8139659 - Nature. 1994 Mar 10;368(6467):154-6 24065775 - Genome Res. 2014 Jan;24(1):64-9 20573260 - Genome Biol. 2010;11(6):213 22495304 - Nature. 2012 May 17;485(7398):381-5 8538762 - Nature. 1996 Jan 11;379(6561):131-7 11734999 - Chromosoma. 2001 Nov;110(6):411-20 12649488 - Science. 2003 Apr 4;300(5616):131-5 11114523 - Curr Biol. 2000 Nov 30;10(23):1531-4 22384067 - PLoS One. 2012;7(2):e31751 23578369 - Curr Opin Cell Biol. 2013 Jun;25(3):314-21 16909387 - Am J Hum Genet. 2006 Sep;79(3):493-9 22325148 - Cell. 2012 Feb 17;148(4):664-78 6585829 - Proc Natl Acad Sci U S A. 1984 May;81(9):2806-10 1985261 - Nature. 1991 Jan 3;349(6304):38-44 20550932 - Cell. 2010 Jun 11;141(6):956-69 22948768 - Genome Res. 2012 Oct;22(10):1864-76 15252442 - PLoS Biol. 2004 Jul;2(7):E171 12616531 - J Cell Biochem. 2003 Apr 1;88(5):923-31 8636206 - J Cell Biol. 1996 Feb;132(3):259-75 24581492 - Cell. 2014 Feb 27;156(5):907-19 8852665 - Hum Mol Genet. 1996 Mar;5(3):391-401 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51 1093816 - Cytogenet Cell Genet. 1975;14(1):9-25 10882105 - Mol Cell. 2000 Apr;5(4):695-705 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5 24469834 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2235-40 21282478 - Genome Res. 2011 Mar;21(3):402-9 24162848 - Nature. 2013 Dec 19;504(7480):465-9 9634239 - Nature. 1998 Jun 11;393(6685):599-601 16948528 - PLoS Comput Biol. 2006 Sep 1;2(9):e113 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74 15669143 - Dev Cell. 2005 Jan;8(1):31-42 11352938 - J Cell Biol. 2001 May 14;153(4):773-84 11740497 - Nat Genet. 2002 Jan;30(1):77-80 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83 22392987 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5346-51 3209066 - Genet Res. 1988 Oct;52(2):151-4 21862626 - Genome Res. 2011 Oct;21(10):1592-600 23334669 - Nat Genet. 2013 Mar;45(3):239-41 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79 16738309 - Mol Cell Biol. 2006 Jun;26(12):4410-20 19571810 - Nature. 2009 Jul 30;460(7255):647-51 9009199 - Genes Dev. 1997 Jan 15;11(2):156-66 10841562 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6634-9 21765457 - Nat Rev Genet. 2011 Aug;12(8):542-53 24065774 - Genome Res. 2014 Jan;24(1):70-83 17512404 - Cell. 2007 May 18;129(4):693-706 23178118 - Cell. 2012 Nov 21;151(5):951-63 9723615 - Nature. 1998 Aug 20;394(6695):776-80 |
References_xml | – reference: Wang Z, Willard HF, Mukherjee S, Furey TS. 2006. Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput Biol 2: e113. – reference: Sharp AJ, Stathaki E, Migliavacca E, Brahmachary M, et al. 2011. DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21: 1592-600. – reference: Riggs AD. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14: 9-25. – reference: Clemson CM, McNeil JA, Willard HF, Lawrence JB. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259-75. – reference: Koren A, McCarroll SA. 2014. Random replication of the inactive X chromosome. Genome Res 24: 64-9. – reference: Csankovszki G, Panning B, Bates B, Pehrson JR, et al. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22: 323-4. – reference: Yang C, McLeod AJ, Cotton AM, de Leeuw CN, et al. 2012. Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing. Genetics 192: 1281-93. – reference: Nozawa RS, Nagao K, Igami KT, Shibata S, et al. 2013. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol 20: 566-73. – reference: Jeon Y, Lee JT. 2011. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146: 119-33. – reference: Cotton AM, Avila L, Penaherrera MS, Affleck JG, et al. 2009. Inactive X chromosome-specific reduction in placental DNA methylation. Hum Mol Genet 18: 3544-52. – reference: Wolf SF, Dintzis S, Toniolo D, Persico G, et al. 1984. Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res 12: 9333-48. – reference: Carrel L, Clemson CM, Dunn JM, Miller AP, et al. 1996. X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse. Hum Mol Genet 5: 391-402. – reference: Lahn BT, Page DC. 1999. Four evolutionary strata on the human X chromosome. Science 286: 964-7. – reference: Calabrese JM, Sun W, Song L, Mugford JW, et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151: 951-63. – reference: Filippova GN, Cheng MK, Moore JM, Truong JP, et al. 2005. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8: 31-42. – reference: Bailey JA, Carrel L, Chakravarti A, Eichler E. 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97: 6634-9. – reference: Simon MD, Pinter SF, Fang R, Sarma K, et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504: 465-9. – reference: Heard E, Mongelard F, Arnaud D, Chureau C, et al. 1999. Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells. Proc Natl Acad Sci USA 96: 6841-6. – reference: Smith KP, Byron M, Clemson CM, Lawrence JB. 2004. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113: 324-35. – reference: Vallot C, Huret C, Lesecque Y, Resch A, et al. 2013. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat Genet 45: 239-41. – reference: Lyon MF. 1962. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14: 135-45. – reference: Nora EP, Lajoie BR, Schulz EG, Giorgetti L, et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485: 381-5. – reference: Horvath LM, Li N, Carrel L. 2013. Deletion of an X-inactivation boundary disrupts adjacent gene silencing. PLoS Genet 9: e1003952. – reference: Al Nadaf S, Deakin JE, Gilbert C, Robinson TJ, et al. 2012. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 121: 71-8. – reference: Anderson CL, Brown CJ. 2002. Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation. Hum Genet 110: 271-8. – reference: Migeon BR, Lee CH, Chowdury AK, Carpenter H. 2002. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71: 286-93. – reference: Hall LL, Clemson CM, Byron M, Wydner K, et al. 2002. Unbalanced X;autosome translocations provide evidence for sequence specificity in the association of XIST RNA with chromatin. Hum Mol Genet 11: 3157-65. – reference: Goto Y, Gomez M, Brockdorff N, Feil R. 2002. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet Genome Res 99: 66-74. – reference: Hansen RS, Canfield TK, Fjeld AD, Gartler SM. 1996. Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345-53. – reference: Khalil AM, Driscoll DJ. 2007. Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation. Epigenetics 2: 114-8. – reference: Gartler SM, Goldman MA. 1994. Reactivation of inactive X-linked genes. Dev Genet 15: 504-14. – reference: Gendrel AV, Apedaile A, Coker H, Termanis A, et al. 2012. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev Cell 23: 265-79. – reference: da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, et al. 2014. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53: 301-16. – reference: Zhang LF, Huynh KD, Lee JT. 2007. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129: 693-706. – reference: Marahrens Y, Panning B, Dausman J, Strauss W, et al. 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11: 156-66. – reference: Wang X, Douglas KC, Vandeberg JL, Clark AG, et al. 2014. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res 24: 70-83. – reference: Hansen RS, Gartler SM. 1990. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci USA 87: 4174-8. – reference: Wutz A, Jaenisch R. 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5: 695-705. – reference: Peters AH, Mermoud JE, O'Carroll D, Pagani M, et al. 2002. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30: 77-80. – reference: Hall LL, Carone DM, Gomez AV, Kolpa HJ, et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156: 907-19. – reference: Cerase A, Smeets D, Tang YA, Gdula M, et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA 111: 2235-40. – reference: Morishima A, Grumbach MM, Taylor JH. 1962. Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci USA 48: 756-63. – reference: Heard E, Rougelle C, Arnaud D, Avner P, et al. 2001. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107: 727-38. – reference: Ross MT, Grafham DV, Coffey AJ, Scherer S, et al. 2005. The DNA sequence of the human X chromosome. Nature 434: 325-37. – reference: Penny GD, Kay GF, Sheardown SA, Rastan S, et al. 1996. Requirement for Xist in X chromosome inactivation. Nature 379: 131-7. – reference: Pessia E, Makino T, Bailly-Bechet M, McLysaght A, et al. 2012. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci USA 109: 5346-51. – reference: Schempp W, Meer B. 1983. Cytologic evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63: 171-4. – reference: Wu H, Luo J, Yu H, Rattner A, et al. 2014. Cellular resolution maps of x chromosome inactivation: implications for neural development, function, and disease. Neuron 81: 103-19. – reference: Cotton AM, Chen CY, Lam LL, Wasserman WW, et al. 2014. Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains. Hum Mol Genet 23: 1211-23. – reference: Chadwick BP, Willard HF. 2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci USA 101: 17450-5. – reference: Mietton F, Sengupta AK, Molla A, Picchi G, et al. 2009. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 29: 150-6. – reference: Dupont C, Gribnau J. 2013. Different flavors of X-chromosome inactivation in mammals. Curr Opin Cell Biol 25: 314-21. – reference: Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, et al. 2013. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol Biol Evol 30: 2588-601. – reference: Lingenfelter PA, Adler DA, Poslinski D, Thomas S, et al. 1998. Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nat Genet 18: 212-3. – reference: Zhao J, Sun BK, Erwin JA, Song JJ, et al. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322: 750-6. – reference: Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 38-44. – reference: Brown CJ, Willard HF. 1994. The human X inactivation center is not required for maintenance of X inactivation. Nature 368: 154-6. – reference: Goodfellow PJ, Mondello C, Darling SM, Pym B, et al. 1988. Absence of methylation of a CpG-rich region at the 5′ end of the MIC2 gene on the active X, and inactive X, and the Y chromosome. Proc Natl Acad Sci USA 85: 5605-9. – reference: Barr ML, Bertram EG. 1949. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163: 676-7. – reference: Jeppesen P, Turner B. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9. – reference: Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487: 254-8. – reference: Lopes AM, Arnold-Croop SE, Amorim A, Carrel L. 2011. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 22: 572-82. – reference: Chadwick BP, Willard HF. 2003. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum Mol Genet 12: 2167-78. – reference: Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53. – reference: Lee JT, Davidow LS, Warshawsky D. 1999. Tsix, a gene antisense to Xist at the X-inactivation center. Nat Genet 21: 400-4. – reference: Yang F, Babak T, Shendure J, Disteche CM. 2010. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20: 614-22. – reference: Mermoud JE, Popova B, Peters AH, Jenuwein T, et al. 2002. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol 12: 247-51. – reference: Mohandas T, Sparkes RS, Hellkuhl B, Grzeschik KH, et al. 1977. Expression of an X-linked gene from an inactive human X chromosome in mouse-human hybrid cells: futher evidence for the noninactivation of the steroid sulfatase locus in man. Proc Natl Acad Sci USA 77: 6759-63. – reference: Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, et al. 2008. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40: 663-9. – reference: Cotton AM, Ge B, Light N, Adoue V, et al. 2013. Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. Genome Biol 14: R122. – reference: Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. 2003. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem 88: 923-31. – reference: Chadwick BP, Valley CM, Willard HF. 2001. Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nucleic Acids Res 29: 2699-705. – reference: Costanzi C, Pehrson JR. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393: 599-601. – reference: de Napoles M, Mermoud JE, Wakao R, Tang YA, et al. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663-76. – reference: Jiang J, Jing Y, Cost GJ, Chiang JC, et al. 2013. Translating dosage compensation to trisomy 21. Nature 500: 296-300. – reference: Nguyen DK, Disteche CM. 2006. Dosage compensation of the active X chromosome in mammals. Nat Genet 38: 47-53. – reference: Mohandas T, Sparkes RS, Shapiro LJ. 1981. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211: 393-6. – reference: Berletch JB, Yang F, Disteche CM. 2010. Escape from X inactivation in mice and humans. Genome Biol 11: 213. – reference: Kohlmaier A, Savarese F, Lachner M, Martens J, et al. 2004. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2: E171. – reference: Brown S, Rastan S. 1988. Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet Res 52: 151-4. – reference: Murakami K, Ohhira T, Oshiro E, Qi D, et al. 2009. Identification of the chromatin regions coated by non-coding Xist RNA. Cytogenet Genome Res 125: 19-25. – reference: Clemson CM, Hall LL, Byron M, McNeil J, et al. 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci USA 103: 7688-93. – reference: Cotton AM, Lam L, Affleck JG, Wilson IM, et al. 2011. Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation. Hum Genet 130: 187-201. – reference: Li SM, Valo Z, Wang J, Gao H, et al. 2012. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS One 7: e31751. – reference: Keohane AM, O'Neill LP, Belyaev ND, Lavender JS, et al. 1996. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 180: 618-30. – reference: Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, et al. 1984. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci USA 81: 2806-10. – reference: Rasmussen TP, Wutz A, Pehrson JR, Jaenisch R. 2001. Expression of Xist RNA is sufficient to initiate macrochromatin body formation. Chromosoma 110: 411-20. – reference: Nora EP, Dekker J, Heard E. 2013. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? BioEssays 35: 818-28. – reference: Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, et al. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-83. – reference: Marks H, Chow JC, Denissov S, Francoijs KJ, et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19: 1361-73. – reference: Migeon BR, Kazi E, Haisley-Royster C, Hu J, et al. 1999. Human X inactivation center induces random X chromosome inactivation in male transgenic mice. Genomics 59: 113-21. – reference: Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, et al. 2006. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79: 493-9. – reference: Jegalian K, Page DC. 1998. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394: 776-80. – reference: Weber M, Davies JJ, Wittig D, Oakeley EJ, et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37: 853-62. – reference: Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341: 1237973. – reference: Chaumeil J, Le Baccon P, Wutz A, Heard E. 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20: 2223-37. – reference: Tavares L, Dimitrova E, Oxley D, Webster J, et al. 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148: 664-78. – reference: Gartler SM, Riggs AD. 1983. Mammalian X-chromosome inactivation. Ann Rev Genet 17: 155-90. – reference: Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, et al. 2012. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22: 1864-76. – reference: Yang C, Chapman AG, Kelsey AD, Minks J, et al. 2011. X-chromosome inactivation: molecular mechanisms from the human perspective. Hum Genet 130: 175-85. – reference: Csankovszki G, Nagy A, Jaenisch R. 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153: 773-83. – reference: Lyon MF. 1998. X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-7. – reference: Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131-5. – reference: Ginno PA, Lim YW, Lott PL, Korf I, et al. 2013. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23: 1590-600. – reference: Kucera KS, Reddy TE, Pauli F, Gertz J, et al. 2011. Allele-specific distribution of RNA polymerase II on female X chromosomes. Hum Mol Genet 20: 3964-73. – reference: Gibcus JH, Dekker J. 2013. The hierarchy of the 3D genome. Mol Cell 49: 773-82. – reference: Kalantry S, Purushothaman S, Bowen RB, Starmer J, et al. 2009. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 460: 647-51. – reference: Boggs BA, Cheung P, Heard E, Spector DL, et al. 2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30: 73-6. – reference: Dubois A, Deuve JL, Navarro P, Merzouk S, et al. 2014. Spontaneous reactivation of clusters of x-linked genes is associated with the plasticity of X-inactivation in mouse trophoblast stem cells. Stem Cells 32: 377-90. – reference: Rastan S, Robertson EJ. 1985. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90: 379-88. – reference: Bala Tannan N, Brahmachary M, Garg P, Borel C, et al. 2014. DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet 23: 1224-36. – reference: Sadreyev RI, Yildirim E, Pinter SF, Lee JT. 2013. Bimodal quantitative relationships between histone modifications for X-linked and autosomal loci. Proc Natl Acad Sci USA 110: 6949-54. – reference: Changolkar LN, Pehrson JR. 2006. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26: 4410-20. – reference: Fang J, Chen T, Chadwick B, Li E, et al. 2004. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X-inactivation. J Biol Chem 279: 52812-5. – reference: Goto Y, Kimura H. 2009. Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37: 7416-28. – reference: Carrel L, Willard HF. 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400-4. – reference: Carrel L, Willard HF. 1999. Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci USA 96: 7364-9. – reference: Chow JC, Ciaudo C, Fazzari MJ, Mise N, et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141: 956-69. – reference: Li N, Carrel L. 2008. Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105: 17055-60. – reference: Dixon JR, Selvaraj S, Yue F, Kim A, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-80. – reference: Splinter E, de Wit E, Nora EP, Klous P, et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25: 1371-83. – reference: Perche P-Y, Vourc'h C, Konecny L, Souchier C, et al. 2000. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531-4. – reference: Nguyen DK, Yang F, Kaul R, Alkan C, et al. 2011. Clcn4-2 genomic structure differs between the X locus in Mus spretus and the autosomal locus in Mus musculus: AT motif enrichment on the X. Genome Res 21: 402-9. – volume: 37 start-page: 7416 year: 2009 end-page: 28 article-title: Inactive X chromosome‐specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X‐inactivated and an escape gene publication-title: Nucleic Acids Res – volume: 180 start-page: 618 year: 1996 end-page: 30 article-title: X‐inactivation and histone H4 acetylation in embryonic stem cells publication-title: Dev Biol – volume: 146 start-page: 119 year: 2011 end-page: 33 article-title: YY1 tethers Xist RNA to the inactive X nucleation center publication-title: Cell – volume: 79 start-page: 493 year: 2006 end-page: 9 article-title: X chromosome‐inactivation patterns of 1,005 phenotypically unaffected females publication-title: Am J Hum Genet – volume: 96 start-page: 6841 year: 1999 end-page: 6 article-title: Human XIST yeast artificial chromosome transgenes show partial X inactivation center function in mouse embryonic stem cells publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 2167 year: 2003 end-page: 78 article-title: Chromatin of the Barr body: histone and non‐histone proteins associated with or excluded from the inactive X chromosome publication-title: Hum Mol Genet – volume: 23 start-page: 1211 year: 2014 end-page: 23 article-title: Spread of X‐chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains publication-title: Hum Mol Genet – volume: 74 start-page: 281 year: 1993 end-page: 9 article-title: The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression publication-title: Cell – volume: 148 start-page: 664 year: 2012 end-page: 78 article-title: RYBP‐PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 publication-title: Cell – volume: 11 start-page: 213 year: 2010 article-title: Escape from X inactivation in mice and humans publication-title: Genome Biol – volume: 151 start-page: 951 year: 2012 end-page: 63 article-title: Site‐specific silencing of regulatory elements as a mechanism of X inactivation publication-title: Cell – volume: 48 start-page: 756 year: 1962 end-page: 63 article-title: Asynchronous duplication of human chromosomes and the origin of sex chromatin publication-title: Proc Natl Acad Sci USA – volume: 163 start-page: 676 year: 1949 end-page: 7 article-title: A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis publication-title: Nature – volume: 434 start-page: 400 year: 2005 end-page: 4 article-title: X‐inactivation profile reveals extensive variability in X‐linked gene expression in females publication-title: Nature – volume: 2 start-page: 114 year: 2007 end-page: 8 article-title: Trimethylation of histone H3 lysine 4 is an epigenetic mark at regions escaping mammalian X inactivation publication-title: Epigenetics – volume: 130 start-page: 187 year: 2011 end-page: 201 article-title: Chromosome‐wide DNA methylation analysis predicts human tissue‐specific X inactivation publication-title: Hum Genet – volume: 5 start-page: 1345 year: 1996 end-page: 53 article-title: Role of late replication timing in the silencing of X‐linked genes publication-title: Hum Mol Genet – volume: 103 start-page: 7688 year: 2006 end-page: 93 article-title: The X chromosome is organized into a gene‐rich outer rim and an internal core containing silenced nongenic sequences publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 663 year: 2004 end-page: 76 article-title: Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation publication-title: Dev Cell – volume: 20 start-page: 614 year: 2010 end-page: 22 article-title: Global survey of escape from X inactivation by RNA‐sequencing in mouse publication-title: Genome Res – volume: 96 start-page: 7364 year: 1999 end-page: 9 article-title: Heterogeneous gene expression from the inactive X chromosome: an X‐linked gene that escapes X inactivation in some human cell lines but is inactivated in others publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 9 year: 1975 end-page: 25 article-title: X inactivation, differentiation, and DNA methylation publication-title: Cytogenet Cell Genet – volume: 90 start-page: 379 year: 1985 end-page: 88 article-title: X‐chromosome deletions in embryo‐derived (EK) cell lines associated with lack of X‐chromosome inactivation publication-title: J Embryol Exp Morphol – volume: 29 start-page: 2699 year: 2001 end-page: 705 article-title: Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome publication-title: Nucleic Acids Res – volume: 130 start-page: 175 year: 2011 end-page: 85 article-title: X‐chromosome inactivation: molecular mechanisms from the human perspective publication-title: Hum Genet – volume: 394 start-page: 776 year: 1998 end-page: 80 article-title: A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated publication-title: Nature – volume: 460 start-page: 647 year: 2009 end-page: 51 article-title: Evidence of Xist RNA‐independent initiation of mouse imprinted X‐chromosome inactivation publication-title: Nature – volume: 286 start-page: 964 year: 1999 end-page: 7 article-title: Four evolutionary strata on the human X chromosome publication-title: Science – volume: 97 start-page: 6634 year: 2000 end-page: 9 article-title: Molecular evidence for a relationship between LINE‐1 elements and X chromosome inactivation: the Lyon repeat hypothesis publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 572 year: 2011 end-page: 82 article-title: Clustered transcripts that escape X inactivation at mouse XqD publication-title: Mamm Genome – volume: 9 start-page: e1003952 year: 2013 article-title: Deletion of an X‐inactivation boundary disrupts adjacent gene silencing publication-title: PLoS Genet – volume: 379 start-page: 131 year: 1996 end-page: 7 article-title: Requirement for Xist in X chromosome inactivation publication-title: Nature – volume: 20 start-page: 2223 year: 2006 end-page: 37 article-title: A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced publication-title: Genes Dev – volume: 322 start-page: 750 year: 2008 end-page: 6 article-title: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome publication-title: Science – volume: 85 start-page: 5605 year: 1988 end-page: 9 article-title: Absence of methylation of a CpG‐rich region at the 5′ end of the gene on the active X, and inactive X, and the Y chromosome publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 247 year: 2002 end-page: 51 article-title: Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation publication-title: Curr Biol – volume: 87 start-page: 4174 year: 1990 end-page: 8 article-title: 5‐Azacytidine‐induced reactivation of the human X chromosome‐linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island publication-title: Proc Natl Acad Sci USA – volume: 125 start-page: 19 year: 2009 end-page: 25 article-title: Identification of the chromatin regions coated by non‐coding Xist RNA publication-title: Cytogenet Genome Res – volume: 81 start-page: 2806 year: 1984 end-page: 10 article-title: Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X‐chromosome inactivation publication-title: Proc Natl Acad Sci USA – volume: 53 start-page: 301 year: 2014 end-page: 16 article-title: Jarid2 is implicated in the initial Xist‐induced targeting of PRC2 to the inactive X chromosome publication-title: Mol Cell – volume: 18 start-page: 212 year: 1998 end-page: 3 article-title: Escape from X inactivation of Smcx is preceded by silencing during mouse development publication-title: Nat Genet – volume: 110 start-page: 411 year: 2001 end-page: 20 article-title: Expression of Xist RNA is sufficient to initiate macrochromatin body formation publication-title: Chromosoma – volume: 77 start-page: 6759 year: 1977 end-page: 63 article-title: Expression of an X‐linked gene from an inactive human X chromosome in mouse‐human hybrid cells: futher evidence for the noninactivation of the steroid sulfatase locus in man publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 853 year: 2005 end-page: 62 article-title: Chromosome‐wide and promoter‐specific analyses identify sites of differential DNA methylation in normal and transformed human cells publication-title: Nat Genet – volume: 30 start-page: 73 year: 2002 end-page: 6 article-title: Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes publication-title: Nat Genet – volume: 279 start-page: 52812 year: 2004 end-page: 5 article-title: Ring1b‐mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X‐inactivation publication-title: J Biol Chem – volume: 21 start-page: 400 year: 1999 end-page: 4 article-title: Tsix, a gene antisense to Xist at the X‐inactivation center publication-title: Nat Genet – volume: 81 start-page: 103 year: 2014 end-page: 19 article-title: Cellular resolution maps of x chromosome inactivation: implications for neural development, function, and disease publication-title: Neuron – volume: 32 start-page: 377 year: 2014 end-page: 90 article-title: Spontaneous reactivation of clusters of x‐linked genes is associated with the plasticity of X‐inactivation in mouse trophoblast stem cells publication-title: Stem Cells – volume: 21 start-page: 1592 year: 2011 end-page: 600 article-title: DNA methylation profiles of human active and inactive X chromosomes publication-title: Genome Res – volume: 38 start-page: 47 year: 2006 end-page: 53 article-title: Dosage compensation of the active X chromosome in mammals publication-title: Nat Genet – volume: 20 start-page: 3964 year: 2011 end-page: 73 article-title: Allele‐specific distribution of RNA polymerase II on female X chromosomes publication-title: Hum Mol Genet – volume: 485 start-page: 381 year: 2012 end-page: 5 article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre publication-title: Nature – volume: 21 start-page: 402 year: 2011 end-page: 9 article-title: Clcn4‐2 genomic structure differs between the X locus in and the autosomal locus in : AT motif enrichment on the X publication-title: Genome Res – volume: 349 start-page: 38 year: 1991 end-page: 44 article-title: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome publication-title: Nature – volume: 341 start-page: 1237973 year: 2013 article-title: The Xist lncRNA exploits three‐dimensional genome architecture to spread across the X chromosome publication-title: Science – volume: 63 start-page: 171 year: 1983 end-page: 4 article-title: Cytologic evidence for three human X‐chromosomal segments escaping inactivation publication-title: Hum Genet – volume: 22 start-page: 1864 year: 2012 end-page: 76 article-title: Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations publication-title: Genome Res – volume: 30 start-page: 2588 year: 2013 end-page: 601 article-title: Genes that escape X‐inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving publication-title: Mol Biol Evol – volume: 107 start-page: 727 year: 2001 end-page: 38 article-title: Methylation of histone H3 at Lys‐9 is an early mark on the X chromosome during X inactivation publication-title: Cell – volume: 26 start-page: 4410 year: 2006 end-page: 20 article-title: macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome publication-title: Mol Cell Biol – volume: 121 start-page: 71 year: 2012 end-page: 8 article-title: A cross‐species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation publication-title: Chromosoma – volume: 40 start-page: 663 year: 2008 end-page: 9 article-title: SmcHD1, containing a structural‐maintenance‐of‐chromosomes hinge domain, has a critical role in X inactivation publication-title: Nat Genet – volume: 300 start-page: 131 year: 2003 end-page: 5 article-title: Role of histone H3 lysine 27 methylation in X inactivation publication-title: Science – volume: 15 start-page: 504 year: 1994 end-page: 14 article-title: Reactivation of inactive X‐linked genes publication-title: Dev Genet – volume: 110 start-page: 271 year: 2002 end-page: 8 article-title: Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation publication-title: Hum Genet – volume: 504 start-page: 465 year: 2013 end-page: 9 article-title: High‐resolution Xist binding maps reveal two‐step spreading during X‐chromosome inactivation publication-title: Nature – volume: 19 start-page: 1361 year: 2009 end-page: 73 article-title: High‐resolution analysis of epigenetic changes associated with X inactivation publication-title: Genome Res – volume: 109 start-page: 5346 year: 2012 end-page: 51 article-title: Mammalian X chromosome inactivation evolved as a dosage‐compensation mechanism for dosage‐sensitive genes on the X chromosome publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 265 year: 2012 end-page: 79 article-title: Smchd1‐dependent and ‐independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome publication-title: Dev Cell – volume: 156 start-page: 907 year: 2014 end-page: 19 article-title: Stable C0T‐1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes publication-title: Cell – volume: 113 start-page: 324 year: 2004 end-page: 35 article-title: Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands publication-title: Chromosoma – volume: 17 start-page: 155 year: 1983 end-page: 90 article-title: Mammalian X‐chromosome inactivation publication-title: Ann Rev Genet – volume: 500 start-page: 296 year: 2013 end-page: 300 article-title: Translating dosage compensation to trisomy 21 publication-title: Nature – volume: 22 start-page: 323 year: 1999 end-page: 4 article-title: Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation publication-title: Nat Genet – volume: 192 start-page: 1281 year: 2012 end-page: 93 article-title: Targeting of over 1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis‐acting regulators of epigenetic silencing publication-title: Genetics – volume: 23 start-page: 1590 year: 2013 end-page: 600 article-title: GC skew at the 5′ and 3′ ends of human genes links R‐loop formation to epigenetic regulation and transcription termination publication-title: Genome Res – volume: 25 start-page: 314 year: 2013 end-page: 21 article-title: Different flavors of X‐chromosome inactivation in mammals publication-title: Curr Opin Cell Biol – volume: 52 start-page: 151 year: 1988 end-page: 4 article-title: Age‐related reactivation of an X‐linked gene close to the inactivation centre in the mouse publication-title: Genet Res – volume: 8 start-page: 31 year: 2005 end-page: 42 article-title: Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development publication-title: Dev Cell – volume: 485 start-page: 376 year: 2012 end-page: 80 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 141 start-page: 956 year: 2010 end-page: 69 article-title: LINE‐1 activity in facultative heterochromatin formation during X chromosome inactivation publication-title: Cell – volume: 29 start-page: 150 year: 2009 end-page: 6 article-title: Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome publication-title: Mol Cell Biol – volume: 368 start-page: 154 year: 1994 end-page: 6 article-title: The human X inactivation center is not required for maintenance of X inactivation publication-title: Nature – volume: 99 start-page: 66 year: 2002 end-page: 74 article-title: Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X‐linked genes publication-title: Cytogenet Genome Res – volume: 2 start-page: E171 year: 2004 article-title: A chromosomal memory triggered by Xist regulates histone methylation in X inactivation publication-title: PLoS Biol – volume: 101 start-page: 17450 year: 2004 end-page: 5 article-title: Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e31751 year: 2012 article-title: Transcriptome‐wide survey of mouse CNS‐derived cells reveals monoallelic expression within novel gene families publication-title: PLoS One – volume: 153 start-page: 773 year: 2001 end-page: 83 article-title: Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation publication-title: J Cell Biol – volume: 23 start-page: 1224 year: 2014 end-page: 36 article-title: DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation publication-title: Hum Mol Genet – volume: 71 start-page: 286 year: 2002 end-page: 93 article-title: Species differences in TSIX/Tsix reveal the roles of these genes in X‐chromosome inactivation publication-title: Am J Hum Genet – volume: 111 start-page: 2235 year: 2014 end-page: 40 article-title: Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 156 year: 1997 end-page: 66 article-title: Xist‐deficient mice are defective in dosage compensation but not spermatogenesis publication-title: Genes Dev – volume: 10 start-page: 1531 year: 2000 end-page: 4 article-title: Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density publication-title: Curr Biol – volume: 88 start-page: 923 year: 2003 end-page: 31 article-title: Same origins of DNA replication function on the active and inactive human X chromosomes publication-title: J Cell Biochem – volume: 80 start-page: 133 year: 1998 end-page: 7 article-title: X‐chromosome inactivation: a repeat hypothesis publication-title: Cytogenet Cell Genet – volume: 2 start-page: e113 year: 2006 article-title: Evidence of influence of genomic DNA sequence on human X chromosome inactivation publication-title: PLoS Comput Biol – volume: 49 start-page: 773 year: 2013 end-page: 82 article-title: The hierarchy of the 3D genome publication-title: Mol Cell – volume: 132 start-page: 259 year: 1996 end-page: 75 article-title: XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure publication-title: J Cell Biol – volume: 20 start-page: 566 year: 2013 end-page: 73 article-title: Human inactive X chromosome is compacted through a PRC2‐independent SMCHD1‐HBiX1 pathway publication-title: Nat Struct Mol Biol – volume: 24 start-page: 70 year: 2014 end-page: 83 article-title: Chromosome‐wide profiling of X‐chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, publication-title: Genome Res – volume: 110 start-page: 6949 year: 2013 end-page: 54 article-title: Bimodal quantitative relationships between histone modifications for X‐linked and autosomal loci publication-title: Proc Natl Acad Sci USA – volume: 45 start-page: 239 year: 2013 end-page: 41 article-title: XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells publication-title: Nat Genet – volume: 30 start-page: 77 year: 2002 end-page: 80 article-title: Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin publication-title: Nat Genet – volume: 14 start-page: 135 year: 1962 end-page: 45 article-title: Sex chromatin and gene action in the mammalian X‐chromosome publication-title: Am J Hum Genet – volume: 211 start-page: 393 year: 1981 end-page: 6 article-title: Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation publication-title: Science – volume: 393 start-page: 599 year: 1998 end-page: 601 article-title: Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals publication-title: Nature – volume: 18 start-page: 3544 year: 2009 end-page: 52 article-title: Inactive X chromosome‐specific reduction in placental DNA methylation publication-title: Hum Mol Genet – volume: 487 start-page: 254 year: 2012 end-page: 8 article-title: Rsx is a metatherian RNA with Xist‐like properties in X‐chromosome inactivation publication-title: Nature – volume: 5 start-page: 391 year: 1996 end-page: 402 article-title: X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE‐1 genes in human and mouse publication-title: Hum Mol Genet – volume: 5 start-page: 695 year: 2000 end-page: 705 article-title: A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation publication-title: Mol Cell – volume: 11 start-page: 3157 year: 2002 end-page: 65 article-title: Unbalanced X;autosome translocations provide evidence for sequence specificity in the association of XIST RNA with chromatin publication-title: Hum Mol Genet – volume: 12 start-page: 542 year: 2011 end-page: 53 article-title: Gene silencing in X‐chromosome inactivation: advances in understanding facultative heterochromatin formation publication-title: Nat Rev Genet – volume: 12 start-page: 9333 year: 1984 end-page: 48 article-title: Complete concordance between glucose‐6‐phosphate dehydrogenase activity and hypomethylation of 3' CpG clusters: implications for X chromosome dosage compensation publication-title: Nucleic Acids Res – volume: 59 start-page: 113 year: 1999 end-page: 21 article-title: Human X inactivation center induces random X chromosome inactivation in male transgenic mice publication-title: Genomics – volume: 141 start-page: 872 year: 2010 end-page: 83 article-title: Derivation of pre‐X inactivation human embryonic stem cells under physiological oxygen concentrations publication-title: Cell – volume: 14 start-page: R122 year: 2013 article-title: Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome publication-title: Genome Biol – volume: 129 start-page: 693 year: 2007 end-page: 706 article-title: Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing publication-title: Cell – volume: 24 start-page: 64 year: 2014 end-page: 9 article-title: Random replication of the inactive X chromosome publication-title: Genome Res – volume: 434 start-page: 325 year: 2005 end-page: 37 article-title: The DNA sequence of the human X chromosome publication-title: Nature – volume: 105 start-page: 17055 year: 2008 end-page: 60 article-title: Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1371 year: 2011 end-page: 83 article-title: The inactive X chromosome adopts a unique three‐dimensional conformation that is dependent on Xist RNA publication-title: Genes Dev – volume: 35 start-page: 818 year: 2013 end-page: 28 article-title: Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods publication-title: BioEssays – ident: e_1_2_13_30_1 doi: 10.1038/nature08161 – ident: e_1_2_13_81_1 doi: 10.1073/pnas.1216449110 – ident: e_1_2_13_76_1 doi: 10.1073/pnas.0807765105 – ident: e_1_2_13_42_1 doi: 10.1038/nrg3035 – ident: e_1_2_13_107_1 doi: 10.1126/science.1084274 – ident: e_1_2_13_62_1 doi: 10.1093/nar/29.13.2699 – ident: e_1_2_13_97_1 doi: 10.1038/349038a0 – ident: e_1_2_13_68_1 doi: 10.1159/000014969 – ident: e_1_2_13_122_1 doi: 10.1073/pnas.85.15.5605 – ident: e_1_2_13_74_1 doi: 10.1007/s00335-011-9350-6 – ident: e_1_2_13_116_1 doi: 10.1007/s004120100158 – ident: e_1_2_13_72_1 doi: 10.1371/journal.pcbi.0020113 – ident: e_1_2_13_124_1 doi: 10.1093/hmg/5.3.391 – ident: e_1_2_13_54_1 doi: 10.1159/000130315 – ident: e_1_2_13_53_1 doi: 10.1002/jcb.10429 – ident: e_1_2_13_86_1 doi: 10.1101/gad.380906 – ident: e_1_2_13_108_1 doi: 10.1016/j.devcel.2004.10.005 – ident: e_1_2_13_75_1 doi: 10.1016/j.cell.2010.04.042 – ident: e_1_2_13_91_1 doi: 10.1016/j.molcel.2013.02.011 – ident: e_1_2_13_67_1 doi: 10.1038/368154a0 – ident: e_1_2_13_105_1 doi: 10.1016/0092-8674(93)90419-Q – ident: e_1_2_13_115_1 doi: 10.1016/S0960-9822(00)00832-0 – ident: e_1_2_13_66_1 doi: 10.1002/dvg.1020150609 – ident: e_1_2_13_39_1 doi: 10.1038/nature12719 – ident: e_1_2_13_117_1 doi: 10.1128/MCB.00997-08 – ident: e_1_2_13_3_1 doi: 10.1073/pnas.1116763109 – ident: e_1_2_13_43_1 doi: 10.1038/nsmb.2532 – ident: e_1_2_13_9_1 doi: 10.1086/341605 – ident: e_1_2_13_64_1 doi: 10.1083/jcb.153.4.773 – ident: e_1_2_13_120_1 doi: 10.1073/pnas.87.11.4174 – ident: e_1_2_13_52_1 doi: 10.1093/hmg/5.9.1345 – ident: e_1_2_13_78_1 doi: 10.1371/journal.pgen.1003952 – ident: e_1_2_13_84_1 doi: 10.1016/j.molcel.2014.01.002 – ident: e_1_2_13_38_1 doi: 10.1159/000207514 – ident: e_1_2_13_36_1 doi: 10.1038/nature12394 – ident: e_1_2_13_123_1 doi: 10.1007/s00439-002-0676-8 – ident: e_1_2_13_17_1 doi: 10.1073/pnas.77.11.6759 – ident: e_1_2_13_118_1 doi: 10.1073/pnas.81.9.2806 – ident: e_1_2_13_77_1 doi: 10.1016/j.devcel.2004.10.018 – ident: e_1_2_13_121_1 doi: 10.1093/hmg/ddp299 – ident: e_1_2_13_83_1 doi: 10.1073/pnas.1312951111 – ident: e_1_2_13_69_1 doi: 10.1093/hmg/ddt513 – ident: e_1_2_13_71_1 doi: 10.1073/pnas.97.12.6634 – ident: e_1_2_13_90_1 doi: 10.1038/163676a0 – ident: e_1_2_13_73_1 doi: 10.1101/gr.108563.110 – ident: e_1_2_13_85_1 doi: 10.1016/j.cell.2011.06.026 – ident: e_1_2_13_100_1 doi: 10.1101/gad.11.2.156 – ident: e_1_2_13_56_1 doi: 10.1101/gr.158436.113 – ident: e_1_2_13_27_1 doi: 10.1002/stem.1557 – ident: e_1_2_13_94_1 doi: 10.1101/gad.633311 – ident: e_1_2_13_28_1 doi: 10.1038/ng0398-212 – ident: e_1_2_13_31_1 doi: 10.1086/507565 – ident: e_1_2_13_15_1 doi: 10.1038/ng1705 – ident: e_1_2_13_92_1 doi: 10.1002/bies.201300040 – ident: e_1_2_13_79_1 doi: 10.1038/nature11082 – ident: e_1_2_13_103_1 doi: 10.1159/000071576 – ident: e_1_2_13_47_1 doi: 10.1093/nar/gkp860 – ident: e_1_2_13_25_1 doi: 10.1007/s00412-011-0343-8 – ident: e_1_2_13_21_1 doi: 10.1101/gr.103200.109 – volume: 14 start-page: 135 year: 1962 ident: e_1_2_13_16_1 article-title: Sex chromatin and gene action in the mammalian X‐chromosome publication-title: Am J Hum Genet – ident: e_1_2_13_89_1 doi: 10.1016/j.cell.2007.03.036 – ident: e_1_2_13_50_1 doi: 10.1101/gr.161828.113 – ident: e_1_2_13_40_1 doi: 10.1126/science.1237973 – ident: e_1_2_13_4_1 doi: 10.1038/nature03440 – ident: e_1_2_13_109_1 doi: 10.1074/jbc.C400493200 – ident: e_1_2_13_112_1 doi: 10.1038/ng789 – ident: e_1_2_13_35_1 doi: 10.1038/29522 – ident: e_1_2_13_51_1 doi: 10.1007/BF00291539 – ident: e_1_2_13_102_1 doi: 10.1038/ng787 – ident: e_1_2_13_37_1 doi: 10.1016/S1097-2765(00)80248-8 – ident: e_1_2_13_18_1 doi: 10.1038/nature03479 – ident: e_1_2_13_63_1 doi: 10.1126/science.6164095 – ident: e_1_2_13_2_1 doi: 10.1186/gb-2010-11-6-213 – ident: e_1_2_13_22_1 doi: 10.1371/journal.pone.0031751 – ident: e_1_2_13_32_1 doi: 10.1093/molbev/mst148 – ident: e_1_2_13_45_1 doi: 10.1093/hmg/ddg229 – ident: e_1_2_13_11_1 doi: 10.1038/ng.2530 – ident: e_1_2_13_46_1 doi: 10.4161/epi.2.2.4612 – ident: e_1_2_13_111_1 doi: 10.1016/S0960-9822(02)00660-7 – ident: e_1_2_13_55_1 doi: 10.1038/ng1598 – ident: e_1_2_13_60_1 doi: 10.1038/ng.142 – ident: e_1_2_13_10_1 doi: 10.1016/j.ceb.2013.03.001 – ident: e_1_2_13_80_1 doi: 10.1101/gr.133751.111 – ident: e_1_2_13_23_1 doi: 10.1016/j.cell.2012.10.037 – ident: e_1_2_13_24_1 doi: 10.1186/gb-2013-14-11-r122 – ident: e_1_2_13_99_1 doi: 10.1038/379131a0 – volume: 90 start-page: 379 year: 1985 ident: e_1_2_13_7_1 article-title: X‐chromosome deletions in embryo‐derived (EK) cell lines associated with lack of X‐chromosome inactivation publication-title: J Embryol Exp Morphol – ident: e_1_2_13_19_1 doi: 10.1126/science.286.5441.964 – ident: e_1_2_13_101_1 doi: 10.1016/S0092-8674(01)00598-0 – ident: e_1_2_13_106_1 doi: 10.1006/dbio.1996.0333 – ident: e_1_2_13_49_1 doi: 10.1073/pnas.48.5.756 – ident: e_1_2_13_93_1 doi: 10.1038/nature11049 – ident: e_1_2_13_104_1 doi: 10.1101/gr.092643.109 – ident: e_1_2_13_20_1 doi: 10.1016/j.neuron.2013.10.051 – ident: e_1_2_13_34_1 doi: 10.1093/hmg/ddr315 – ident: e_1_2_13_14_1 doi: 10.1534/genetics.112.143743 – ident: e_1_2_13_44_1 doi: 10.1038/31275 – ident: e_1_2_13_5_1 doi: 10.1146/annurev.ge.17.120183.001103 – ident: e_1_2_13_6_1 doi: 10.1016/j.cell.2010.04.010 – ident: e_1_2_13_8_1 doi: 10.1038/7734 – ident: e_1_2_13_58_1 doi: 10.1038/nature11171 – ident: e_1_2_13_61_1 doi: 10.1007/s00439-011-1007-8 – ident: e_1_2_13_110_1 doi: 10.1007/s00412-004-0325-1 – ident: e_1_2_13_29_1 doi: 10.1017/S0016672300027531 – ident: e_1_2_13_70_1 doi: 10.1093/hmg/ddt553 – ident: e_1_2_13_82_1 doi: 10.1126/science.1163045 – ident: e_1_2_13_12_1 doi: 10.1006/geno.1999.5861 – ident: e_1_2_13_41_1 doi: 10.1093/hmg/11.25.3157 – ident: e_1_2_13_95_1 doi: 10.1007/s00439-011-0994-9 – ident: e_1_2_13_57_1 doi: 10.1101/gr.161919.113 – ident: e_1_2_13_87_1 doi: 10.1073/pnas.0601069103 – ident: e_1_2_13_114_1 doi: 10.1371/journal.pbio.0020171 – ident: e_1_2_13_59_1 doi: 10.1016/j.devcel.2012.06.011 – ident: e_1_2_13_48_1 doi: 10.1128/MCB.02258-05 – ident: e_1_2_13_96_1 doi: 10.1016/j.cell.2011.12.029 – ident: e_1_2_13_65_1 doi: 10.1038/11887 – ident: e_1_2_13_33_1 doi: 10.1101/gr.112680.110 – ident: e_1_2_13_98_1 doi: 10.1083/jcb.132.3.259 – ident: e_1_2_13_119_1 doi: 10.1093/nar/12.24.9333 – ident: e_1_2_13_26_1 doi: 10.1073/pnas.96.13.7364 – ident: e_1_2_13_13_1 doi: 10.1073/pnas.96.12.6841 – ident: e_1_2_13_113_1 doi: 10.1073/pnas.0408021101 – ident: e_1_2_13_88_1 doi: 10.1016/j.cell.2014.01.042 – reference: 8636206 - J Cell Biol. 1996 Feb;132(3):259-75 – reference: 24462204 - Mol Cell. 2014 Jan 23;53(2):301-16 – reference: 21947602 - Chromosoma. 2012 Feb;121(1):71-8 – reference: 10431231 - Nat Genet. 1999 Aug;22(4):323-4 – reference: 2456574 - Proc Natl Acad Sci U S A. 1988 Aug;85(15):5605-9 – reference: 1985261 - Nature. 1991 Jan 3;349(6304):38-44 – reference: 22495304 - Nature. 2012 May 17;485(7398):381-5 – reference: 10841562 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6634-9 – reference: 24065775 - Genome Res. 2014 Jan;24(1):64-9 – reference: 3834036 - J Embryol Exp Morphol. 1985 Dec;90:379-88 – reference: 9009199 - Genes Dev. 1997 Jan 15;11(2):156-66 – reference: 21769671 - Mamm Genome. 2011 Oct;22(9-10):572-82 – reference: 17965609 - Epigenetics. 2007 Apr-Jun;2(2):114-8 – reference: 8343956 - Cell. 1993 Jul 30;74(2):281-9 – reference: 17512404 - Cell. 2007 May 18;129(4):693-706 – reference: 1093816 - Cytogenet Cell Genet. 1975;14(1):9-25 – reference: 23863942 - Nature. 2013 Aug 15;500(7462):296-300 – reference: 8954732 - Dev Biol. 1996 Dec 15;180(2):618-30 – reference: 11740497 - Nat Genet. 2002 Jan;30(1):77-80 – reference: 10409422 - Genomics. 1999 Jul 15;59(2):113-21 – reference: 15772651 - Nature. 2005 Mar 17;434(7031):325-37 – reference: 22722828 - Nature. 2012 Jul 12;487(7406):254-8 – reference: 22384067 - PLoS One. 2012;7(2):e31751 – reference: 19843608 - Nucleic Acids Res. 2009 Dec;37(22):7416-28 – reference: 20550932 - Cell. 2010 Jun 11;141(6):956-69 – reference: 24115267 - Stem Cells. 2014 Feb;32(2):377-90 – reference: 12023758 - Am J Hum Genet. 2002 Aug;71(2):286-93 – reference: 15525528 - Dev Cell. 2004 Nov;7(5):663-76 – reference: 24065774 - Genome Res. 2014 Jan;24(1):70-83 – reference: 8139659 - Nature. 1994 Mar 10;368(6467):154-6 – reference: 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23 – reference: 9678347 - Cytogenet Cell Genet. 1998;80(1-4):133-7 – reference: 24186870 - Hum Mol Genet. 2014 Mar 1;23(5):1224-36 – reference: 23023002 - Genetics. 2012 Dec;192(4):1281-93 – reference: 23832846 - Bioessays. 2013 Sep;35(9):818-28 – reference: 10542153 - Science. 1999 Oct 29;286(5441):964-7 – reference: 24581492 - Cell. 2014 Feb 27;156(5):907-19 – reference: 9634239 - Nature. 1998 Jun 11;393(6685):599-601 – reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3 – reference: 16948528 - PLoS Comput Biol. 2006 Sep 1;2(9):e113 – reference: 21791549 - Hum Mol Genet. 2011 Oct 15;20(20):3964-73 – reference: 14467629 - Am J Hum Genet. 1962 Jun;14:135-48 – reference: 20363980 - Genome Res. 2010 May;20(5):614-22 – reference: 10359800 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6841-6 – reference: 16912274 - Genes Dev. 2006 Aug 15;20(16):2223-37 – reference: 11114523 - Curr Biol. 2000 Nov 30;10(23):1531-4 – reference: 24023392 - Mol Biol Evol. 2013 Dec;30(12):2588-601 – reference: 12616531 - J Cell Biochem. 2003 Apr 1;88(5):923-31 – reference: 19586922 - Hum Mol Genet. 2009 Oct 1;18(19):3544-52 – reference: 6585829 - Proc Natl Acad Sci U S A. 1984 May;81(9):2806-10 – reference: 16682630 - Proc Natl Acad Sci U S A. 2006 May 16;103(20):7688-93 – reference: 12915472 - Hum Mol Genet. 2003 Sep 1;12(17):2167-78 – reference: 18936163 - Mol Cell Biol. 2009 Jan;29(1):150-6 – reference: 24469834 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2235-40 – reference: 7530612 - Dev Genet. 1994;15(6):504-14 – reference: 18971342 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17055-60 – reference: 15574503 - Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17450-5 – reference: 12444100 - Hum Mol Genet. 2002 Dec 1;11(25):3157-65 – reference: 23178118 - Cell. 2012 Nov 21;151(5):951-63 – reference: 6364959 - Annu Rev Genet. 1983;17:155-90 – reference: 16909387 - Am J Hum Genet. 2006 Sep;79(3):493-9 – reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 – reference: 23868195 - Genome Res. 2013 Oct;23(10):1590-600 – reference: 18974356 - Science. 2008 Oct 31;322(5902):750-6 – reference: 20471072 - Cell. 2010 May 28;141(5):872-83 – reference: 22392987 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5346-51 – reference: 8538762 - Nature. 1996 Jan 11;379(6561):131-7 – reference: 21553122 - Hum Genet. 2011 Aug;130(2):175-85 – reference: 8872476 - Hum Mol Genet. 1996 Sep;5(9):1345-53 – reference: 12900547 - Cytogenet Genome Res. 2002;99(1-4):66-74 – reference: 21282478 - Genome Res. 2011 Mar;21(3):402-9 – reference: 24411735 - Neuron. 2014 Jan 8;81(1):103-19 – reference: 18425126 - Nat Genet. 2008 May;40(5):663-9 – reference: 14476104 - Proc Natl Acad Sci U S A. 1962 May 15;48:756-63 – reference: 15669143 - Dev Cell. 2005 Jan;8(1):31-42 – reference: 16341221 - Nat Genet. 2006 Jan;38(1):47-53 – reference: 15616869 - Chromosoma. 2004 Dec;113(6):324-35 – reference: 10192391 - Nat Genet. 1999 Apr;21(4):400-4 – reference: 21765457 - Nat Rev Genet. 2011 Aug;12(8):542-53 – reference: 22325148 - Cell. 2012 Feb 17;148(4):664-78 – reference: 15252442 - PLoS Biol. 2004 Jul;2(7):E171 – reference: 24278033 - PLoS Genet. 2013 Nov;9(11):e1003952 – reference: 11734999 - Chromosoma. 2001 Nov;110(6):411-20 – reference: 22948768 - Genome Res. 2012 Oct;22(10):1864-76 – reference: 9723615 - Nature. 1998 Aug 20;394(6695):776-80 – reference: 6164095 - Science. 1981 Jan 23;211(4480):393-6 – reference: 21729784 - Cell. 2011 Jul 8;146(1):119-33 – reference: 16007088 - Nat Genet. 2005 Aug;37(8):853-62 – reference: 23334669 - Nat Genet. 2013 Mar;45(3):239-41 – reference: 6514579 - Nucleic Acids Res. 1984 Dec 21;12(24):9333-48 – reference: 11935340 - Hum Genet. 2002 Mar;110(3):271-8 – reference: 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83 – reference: 20573260 - Genome Biol. 2010;11(6):213 – reference: 6682404 - Hum Genet. 1983;63(2):171-4 – reference: 3209066 - Genet Res. 1988 Oct;52(2):151-4 – reference: 19581487 - Genome Res. 2009 Aug;19(8):1361-73 – reference: 24176135 - Genome Biol. 2013;14(11):R122 – reference: 23564346 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6949-54 – reference: 12649488 - Science. 2003 Apr 4;300(5616):131-5 – reference: 11747809 - Cell. 2001 Dec 14;107(6):727-38 – reference: 6935682 - Proc Natl Acad Sci U S A. 1980 Nov;77(11):6759-63 – reference: 23828888 - Science. 2013 Aug 16;341(6147):1237973 – reference: 8852665 - Hum Mol Genet. 1996 Mar;5(3):391-401 – reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4 – reference: 16738309 - Mol Cell Biol. 2006 Jun;26(12):4410-20 – reference: 23578369 - Curr Opin Cell Biol. 2013 Jun;25(3):314-21 – reference: 19617692 - Cytogenet Genome Res. 2009;125(1):19-25 – reference: 21862626 - Genome Res. 2011 Oct;21(10):1592-600 – reference: 10882105 - Mol Cell. 2000 Apr;5(4):695-705 – reference: 1693431 - Proc Natl Acad Sci U S A. 1990 Jun;87(11):4174-8 – reference: 11433014 - Nucleic Acids Res. 2001 Jul 1;29(13):2699-705 – reference: 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79 – reference: 23542155 - Nat Struct Mol Biol. 2013 May;20(5):566-73 – reference: 19571810 - Nature. 2009 Jul 30;460(7255):647-51 – reference: 18120749 - Nature. 1949 Apr 30;163(4148):676 – reference: 10377420 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7364-9 – reference: 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5 – reference: 11839280 - Curr Biol. 2002 Feb 5;12(3):247-51 – reference: 11352938 - J Cell Biol. 2001 May 14;153(4):773-84 – reference: 21597963 - Hum Genet. 2011 Aug;130(2):187-201 – reference: 22495300 - Nature. 2012 May 17;485(7398):376-80 – reference: 24162848 - Nature. 2013 Dec 19;504(7480):465-9 – reference: 11740495 - Nat Genet. 2002 Jan;30(1):73-6 |
SSID | ssj0009624 |
Score | 2.403987 |
SecondaryResourceType | review_article |
Snippet | In humans over 15% of X‐linked genes have been shown to ‘escape’ from X‐chromosome inactivation (XCI): they continue to be expressed to some extent from the... In humans over 15% of X-linked genes have been shown to 'escape' from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the... In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 746 |
SubjectTerms | allelic imbalance Animals boundary elements Chromosomes Chromosomes, Human, X - genetics Chromosomes, Human, X - ultrastructure DNA Methylation dosage compensation epigenetic marks Evolution, Molecular Gene Expression Genes Genes, X-Linked Humans Inactivation Prospects & Overviews RNA-seq Topology waystations X Chromosome Inactivation XIST |
Title | Variable escape from X-chromosome inactivation: Identifying factors that tip the scales towards expression |
URI | https://api.istex.fr/ark:/67375/WNG-9F89141J-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201400032 https://www.ncbi.nlm.nih.gov/pubmed/24913292 https://www.proquest.com/docview/1553146842 https://www.proquest.com/docview/1547542615 https://www.proquest.com/docview/1566832319 https://pubmed.ncbi.nlm.nih.gov/PMC4143967 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgCIkL35RAqYyE4JR24zhxzA0QS1WJCiEKe7NsZ6JddclWTVYqnPgJ_EZ-CTNxNu3yKcEt2UyyG-94_CZ584axRyNrtbVCxqnNbSxLrWIHIGIvSmfTwqW2q_B-fZDvHcr9STY5V8Uf9CGGB240M7p4TRPcumb3TDTUUSYpKEFAx6QgTIQtQkVvz_SjdN51tcU8I4sx0VAr1caR2F0_fW1VukQDfPoryPkzc_I8ou2WpPE1Zlc3E5goRzvL1u34zz_oPP7P3V5nV3u8yp8FB7vBLkB9k10OHSw_3WLz95hrU_UVh4aoVJzKVfjk25evfkpEv2bxEfispuqJ8Oz3KQ-lwV15Fe-7_fB2alvezo5xAzheaA74WUfobTic9lzd-jY7HL9892Iv7hs4xD5TmOT6UaHSCkOqKzE0JABeeS9UWVggXCURS4EuvAPhKue9EwqjbQJZ7hCIiSJP77CNelHDXcZJowaKCgFrVUo01COvQVQutx6XjhQiFq_-QON7dXNqsjE3QZdZGBpBM4xgxJ4M9sdB1-O3lo87fxjM7MkRseFUZj4cvDJ6XOhEJvtmHLGtlcOYPhA0htoyUXWbxOs8HA7jFKb3MraGxZJsJPUhRmz5J5s8x-CLATNim8EHhx-EGXSSCo3foNa8czAgCfH1I_Vs2kmJS4TLOlcRE53z_WUozHNMUYa9e_9y0n12hbYDhXKLbbQnS3iAsK512-yikG-2uwn8HTMBSLU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVggulDcuBRYJwcltvH4uN0CEUNocUAu9rXbXYyVqcKrGkQonfgK_kV_CzK7tEp4S3BJ77MSb2dnv28x8w9ijgdZSa5GEsc50mJQyDw2ACK0ojY4LE2tX4b0_zkaHye5R2mUTUi2M14foN9xoZrh4TROcNqR3zlVDDVFJQQwBPROj8Dq19Xas6u25gpTMXF9bZBppiFQj73QbB2Jn9fqVdWmdhvjsV6Dz59zJ7zGtW5SGG8x0j-NzUY63l43Ztp9-UHr8r-e9yq60kJU_8z52jV2A-jq76JtYfrzBZu-QblMBFocFZVNxqljhR18_f7ETyvVbzD8An9ZUQOG3f59yXx3sKqx42_CHNxPd8GZ6gi-A441mgMdcTu-Cw1mbrlvfZIfDlwcvRmHbwyG0aY481w6KPK4wqpoSo0MEYHNrRV4WGghaJQinQBbWgDCVsdaIHANuBGlmEIuJIotvsbV6XsMdxkmmBooKMWtVJmgoB1aCqEymLa4eMQQs7H5BZVuBc-qzMVNemlkoGkHVj2DAnvT2J17a47eWj51D9Gb69JgS4vJUvR-_UnJYyCiJdtUwYFudx6g2FiwUdWaiArcE7_OwP42zmP6a0TXMl2STUCtihJd_sskyjL8YMwN22zth_4WQREexkPgJ-Yp79gakIr56pp5OnJp4gohZZnnAhPO-vwyFeo4spX-3-S8XPWCXRgf7e2rv9fjNXXaZjvuMyi221pwu4R6ivMbcd_P4G9PRS_k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKxAX3pSUAkZCcEqbOE4ccwNKKAVWCFHYm2U7jnbVbXbVzUqFEz-B38gvYcbJpl2eEtzyGCexMx5_k8x8Q8iDSGupNeNhojMd8lKK0DjHQstKo5PcJNpneL8ZZHsHfH-YDs9k8bf8EP0HN5wZ3l7jBJ-V1c4paahBT5KhgwCKCUZ4nWdRjnq9--6UQEpmvqwtOBppCJ6GWNI2Rmxntf3KsrSOI3zyK8z5c-jkWUjr16TiMtHL3rShKIfbi8Zs288_ED3-T3evkEsdYKVPWg27Ss65-ho535aw_HSdTD6As43pV9TNMZaKYr4KHX778tWOMNJvPj1ydFxj-kT78fcxbXODfX4V7cr90GakG9qMZ7DhKFxo4uCYj-idU3fSBevWN8hB8fz9s72wq-AQ2lSAl2ujXCQV2FRTgm2InbPCWibKXDsEVhzAlJO5NY6ZylhrmABzG7s0M4DEWJ4lN8laPa3dLUKRpMblFSDWquQgKCMrHatMpi2sHYkLSLh8gcp29OZYZWOiWmJmpnAEVT-CAXnUy89aYo_fSj70-tCL6eNDDIcTqfo4eKFkkcuYx_uqCMjWUmFUZwnmCusyYXobh-vc70_DHMYfM7p20wXKcCxEDODyTzJZBtYXLGZANlod7B8IXOg4YRLuIFa0sxdADvHVM_V45LnEOeBlmYmAMK98fxkK9RR8lH5v818a3SMX3u4W6vXLwavb5CIebsMpt8hac7xwdwDiNeaun8XfAdi3SrE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+escape+from+X-chromosome+inactivation%3A+Identifying+factors+that+tip+the+scales+towards+expression&rft.jtitle=BioEssays&rft.au=Peeters%2C+Samantha+B.&rft.au=Cotton%2C+Allison+M.&rft.au=Brown%2C+Carolyn+J.&rft.date=2014-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=36&rft.issue=8&rft.spage=746&rft.epage=756&rft_id=info:doi/10.1002%2Fbies.201400032&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9F89141J_F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |