An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans

Phosphorylation of histone H2AX on serine 139 (gamma-H2AX, γH2AX) occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell. Here we describe a rapid and simple flow-cytometry-based method, optimized to measure gamma-H2AX in non-fixed peri...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 35; no. 5; p. e36
Main Authors Ismail, Ismail Hassan, Wadhra, Tabasum Imran, Hammarsten, Ola
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorylation of histone H2AX on serine 139 (gamma-H2AX, γH2AX) occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell. Here we describe a rapid and simple flow-cytometry-based method, optimized to measure gamma-H2AX in non-fixed peripheral blood cells. No DSB induced signal was observed in H2AX−/− cells indicating that our FACS method specifically recognized gamma-H2AX accumulation. The gamma-H2AX assay was capable of detecting DNA damage at levels 100-fold below the detection limit of the alkaline comet assay. The gamma-H2AX signal was quantitative with a linear increase of the gamma-H2AX signal over two orders of magnitude. We found that all nucleated blood cell types examined, including the short-lived neutrophils induce gamma-H2AX in response to DSBs. Interindividual difference in the gamma-H2AX signal in response to ionizing radiation and the DSB-inducing drug calicheamicin was almost 2-fold in blood cells from patients, indicating that the amount of gamma-H2AX produced in response to a given dose of radiation varies significantly in the human population. This simple method could be used to monitor response to radiation or DNA-damaging drugs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkl1169