Different patterns of white matter microstructural alterations between psychotic and non-psychotic bipolar disorder

This study aimed to investigate alterations in white matter (WM) microstructure in patients with psychotic and non-psychotic bipolar disorder (PBD and NPBD, respectively). We used 3T-magnetic resonance imaging to examine 29 PBD, 23 NPBD, and 65 healthy control (HC) subjects. Using tract-based spatia...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 3; p. e0265671
Main Authors Lee, Dong-Kyun, Lee, Hyeongrae, Ryu, Vin, Kim, Sung-Wan, Ryu, Seunghyong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.03.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed to investigate alterations in white matter (WM) microstructure in patients with psychotic and non-psychotic bipolar disorder (PBD and NPBD, respectively). We used 3T-magnetic resonance imaging to examine 29 PBD, 23 NPBD, and 65 healthy control (HC) subjects. Using tract-based spatial statistics for diffusion tensor imaging data, we compared fractional anisotropy (FA) and mean diffusion (MD) pairwise among the PBD, NPBD, and HC groups. We found several WM areas of decreased FA or increased MD in the PBD and NPBD groups compared to HC. PBD showed widespread FA decreases in the corpus callosum as well as the bilateral internal capsule and fornix. However, NPBD showed local FA decreases in a part of the corpus callosum body as well as in limited regions within the left cerebral hemisphere, including the anterior and posterior corona radiata and the cingulum. In addition, both PBD and NPBD shared widespread MD increases across the posterior corona radiata, cingulum, and sagittal stratum. These findings suggest that widespread WM microstructural alterations might be a common neuroanatomical characteristic of bipolar disorder, regardless of being psychotic or non-psychotic. Particularly, PBD might involve extensive inter-and intra-hemispheric WM connectivity disruptions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0265671