Indirect combustion noise

An analysis is made of the noise generated during the passage of quiescent temperature/entropy inhomogeneities through regions of rapidly accelerated mean flow. This is an important source of jet engine core noise. Bake et al. (J. Sound Vib., vol. 326, 2009, pp. 574–598) have used an ‘entropy wave g...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 659; pp. 267 - 288
Main Author HOWE, M. S.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An analysis is made of the noise generated during the passage of quiescent temperature/entropy inhomogeneities through regions of rapidly accelerated mean flow. This is an important source of jet engine core noise. Bake et al. (J. Sound Vib., vol. 326, 2009, pp. 574–598) have used an ‘entropy wave generator’ coupled with a converging–diverging nozzle to perform a series of canonical measurements of the sound produced when the inhomogeneity consists of a nominally uniform slug of hot gas. When flow separation and jet formation occur in the diffuser section of the nozzle, it is shown in this paper that the vortex sound generated by the jet is strongly correlated with the entropy noise produced by the slug and that the overall noise level is significantly reduced. Streamwise ‘stretching’ of the hot slug during high subsonic acceleration into the nozzle and the consequent attenuation of the entropy gradient in the nozzle are shown to significantly decrease the effective rate at which indirect combustion noise increases with the Mach number. Numerical predictions indicate that this is responsible for the peak observed by Bake et al. in the entropy-generated sound pressure at a nozzle Mach number near 0.6.
Bibliography:ArticleID:00246
ark:/67375/6GQ-2NFMSC1M-V
PII:S0022112010002466
istex:C1E9CDE5FB40C06E1C2FED59DF5ED0A50425ABA4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112010002466