Antitumor activities of synthetic and natural stilbenes through antiangiogenic action

We reported that the antitumor and antimetastatic actions of resveratrol might be due to the inhibition of tumor‐induced angiogenesis. To search for anticancer agents with stronger activity than resveratrol, we examined the antiangiogenic effects of 21 synthetic and/or natural stilbenes. Among these...

Full description

Saved in:
Bibliographic Details
Published inCancer science Vol. 99; no. 10; pp. 2083 - 2096
Main Authors Kimura, Yoshiyuki, Sumiyoshi, Maho, Baba, Kimiye
Format Journal Article
LanguageEnglish
Published Melbourne, Australia Blackwell Publishing Asia 01.10.2008
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We reported that the antitumor and antimetastatic actions of resveratrol might be due to the inhibition of tumor‐induced angiogenesis. To search for anticancer agents with stronger activity than resveratrol, we examined the antiangiogenic effects of 21 synthetic and/or natural stilbenes. Among these 21 stilbenes, 2,3‐, 3,4‐, and 4,4′‐dihydroxystilbene inhibited the pro‐matrix metalloproteinase (pro‐MMP)–9 production in colon 26 cells at 5–25 µM, vascular endothelial growth factor (VEGF)–induced human umbilical vein endothelial cell (HUVEC) migration at 10 and 25 µM, and VEGF‐induced angiogenesis at 5–50 µM. Resvertarol inhibited the pro‐MMP‐9 production and VEGF‐induced angiogenesis at 25 or 50 µM. Thus, the inhibition of pro‐MMP‐9 production in colon 26 cells and VEGF‐induced angiogenesis by three dihydroxystilbenes were greater than those of resveratrol. The three dihydroxystilbenes (8 mg/kg, intraperitoneal injection) inhibited the tumor‐induced neovascularization in colon 26–packed chamber‐bearing mice and the tumor growth in colon 26–bearing mice. Furthermore, the three dihydroxystilbenes inhibited VEGF‐induced VEGFR‐2 phosphorylation. On the other hand, the three dihydroxystilbenes had no effect on VEGFR‐1 and‐2 expression, and VEGF‐induced VEGFR‐1 phosphorylation in HUVECs. These findings suggest that the inhibition of tumor‐induced neovascularization by these three dihydroxystilbenes may be due to the inhibition of VEGF‐induced endothelial cell migration and VEGF‐induced angiogenesis through the inhibition of VEGF‐induced VEGFR‐2 phosphorylation in endothelial cells and pro‐MMP‐9 expression in colon 26 cells. (Cancer Sci 2008; 99: 2083–2096)
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1347-9032
1349-7006
1349-7006
DOI:10.1111/j.1349-7006.2008.00948.x