New Designs for Phototherapeutic Transition Metal Complexes
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light‐activated trans...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 1; pp. 61 - 73 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.01.2020
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light‐activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. This Minireview summarizes new designs for light‐activated transition metal complexes which offer photoactivatable prodrugs with novel targeted mechanisms of action for use in photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). |
---|---|
AbstractList | In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry. In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry. In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light‐activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. This Minireview summarizes new designs for light‐activated transition metal complexes which offer photoactivatable prodrugs with novel targeted mechanisms of action for use in photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light‐activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side‐effects. This Minireview summarizes new designs for light‐activated transition metal complexes which offer photoactivatable prodrugs with novel targeted mechanisms of action for use in photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). |
Author | Huang, Huaiyi Zhang, Pingyu Sadler, Peter J. Imberti, Cinzia |
AuthorAffiliation | 3 Department of Chemistry University of Warwick Coventry CV4 7AL UK 2 School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China 1 College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China |
AuthorAffiliation_xml | – name: 3 Department of Chemistry University of Warwick Coventry CV4 7AL UK – name: 1 College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China – name: 2 School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China |
Author_xml | – sequence: 1 givenname: Cinzia surname: Imberti fullname: Imberti, Cinzia organization: University of Warwick – sequence: 2 givenname: Pingyu orcidid: 0000-0002-2921-9490 surname: Zhang fullname: Zhang, Pingyu email: p.zhang6@szu.edu.cn organization: University of Warwick – sequence: 3 givenname: Huaiyi orcidid: 0000-0002-2091-7954 surname: Huang fullname: Huang, Huaiyi email: huanghy87@mail.sysu.edu.cn organization: University of Warwick – sequence: 4 givenname: Peter J. orcidid: 0000-0001-9160-1941 surname: Sadler fullname: Sadler, Peter J. email: P.J.Sadler@warwick.ac.uk organization: University of Warwick |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31310436$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFTEUxYNU7JdblzLgppt53ptMJhkEoTyrFmrbRbsOaXqnL2Ve8kxmrP3vzeO1VQviKhfyO4dz79llWyEGYuwNwgwB-HsbPM04YAcSFb5gOyg51kIpsVXmRohaaYnbbDfn28JrDe0rti1QIDSi3WEfTumu-kTZ34Rc9TFV54s4xnFBya5oGr2rLpIN2Y8-huobjXao5nG5Gugn5X32srdDptcP7x67_Hx0Mf9an5x9OZ4fntROKsRaKtkDcWg6CQrAKucaVNBZzXtqZNODtdeiddBedS0oy4UWSLJIbIeopdhjHze-q-lqSdeOwpjsYFbJL226N9F68_dP8AtzE3-YtlNlT10MDh4MUvw-UR7N0mdHw2ADxSkbzqVWomRVBX33DL2NUwplPcMF16JtBUCh3v6Z6CnK410L0GwAl2LOiXrj_GjXRywB_WAQzLo-s67PPNVXZLNnskfnfwq6jeDOD3T_H9ocnh4f_db-AoVxq4A |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c00922 crossref_primary_10_1002_chem_202303568 crossref_primary_10_1002_anie_202000528 crossref_primary_10_1016_j_ccr_2021_214210 crossref_primary_10_1021_acs_inorgchem_4c03083 crossref_primary_10_1016_j_nano_2023_102660 crossref_primary_10_1002_adfm_202010337 crossref_primary_10_1016_j_cclet_2021_11_017 crossref_primary_10_1002_ejic_202200487 crossref_primary_10_1016_j_ccr_2022_214726 crossref_primary_10_3389_fimmu_2021_716860 crossref_primary_10_1016_j_jinorgbio_2023_112226 crossref_primary_10_1002_adhm_202304209 crossref_primary_10_1002_ange_202008432 crossref_primary_10_1002_ange_201916400 crossref_primary_10_1016_j_ejmech_2024_116956 crossref_primary_10_1039_D0DT01742F crossref_primary_10_1021_acs_jctc_1c01046 crossref_primary_10_1016_j_cej_2024_159140 crossref_primary_10_1002_cbic_202400678 crossref_primary_10_1002_anie_202112236 crossref_primary_10_1016_j_ccr_2021_214104 crossref_primary_10_1007_s43630_023_00474_6 crossref_primary_10_1039_D2BM01698B crossref_primary_10_1039_D3CC01953E crossref_primary_10_1002_chem_202001077 crossref_primary_10_1039_D0CC06926D crossref_primary_10_3389_fchem_2020_596590 crossref_primary_10_1021_acs_bioconjchem_1c00082 crossref_primary_10_1016_j_bmc_2024_117894 crossref_primary_10_1039_D2QI01079H crossref_primary_10_1002_chem_202003486 crossref_primary_10_1002_smtd_202400563 crossref_primary_10_1002_chem_202004698 crossref_primary_10_1021_acs_jmedchem_3c01978 crossref_primary_10_1016_j_jinorgbio_2024_112758 crossref_primary_10_1021_acsami_1c06381 crossref_primary_10_1002_ange_202400049 crossref_primary_10_1002_cbic_202400305 crossref_primary_10_1246_cl_200139 crossref_primary_10_1002_ange_202015671 crossref_primary_10_1039_D2BM01700H crossref_primary_10_54167_tch_v17i4_1355 crossref_primary_10_1039_D4TB01413H crossref_primary_10_1126_sciadv_adg5964 crossref_primary_10_1002_adhm_202302495 crossref_primary_10_1038_s41557_023_01242_w crossref_primary_10_1002_adhm_202400956 crossref_primary_10_1002_ejic_202100527 crossref_primary_10_1111_php_13405 crossref_primary_10_1021_jacs_4c08278 crossref_primary_10_1039_D1CC02722K crossref_primary_10_1039_D3DT01548C crossref_primary_10_1039_D2RA04813B crossref_primary_10_2147_IJN_S329855 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1039_D1SC05478C crossref_primary_10_1039_D3CP02346J crossref_primary_10_1016_j_ccr_2023_215654 crossref_primary_10_1016_j_envres_2023_116287 crossref_primary_10_1016_j_cbpa_2021_02_007 crossref_primary_10_1016_j_jphotobiol_2022_112473 crossref_primary_10_1039_D4DT01345J crossref_primary_10_1007_s00775_020_01798_9 crossref_primary_10_1016_j_ccr_2021_214129 crossref_primary_10_1039_D0DT02082F crossref_primary_10_1002_anie_202413506 crossref_primary_10_1021_jacs_1c08630 crossref_primary_10_1002_anie_202015671 crossref_primary_10_1016_j_bioorg_2022_106044 crossref_primary_10_1039_D4CS01193G crossref_primary_10_1038_s41467_022_29969_z crossref_primary_10_1002_ppsc_202100193 crossref_primary_10_1039_D2DT00090C crossref_primary_10_1021_acs_jpclett_1c00829 crossref_primary_10_1021_acs_inorgchem_1c00444 crossref_primary_10_1002_cplu_202000307 crossref_primary_10_1016_j_jinorgbio_2022_112057 crossref_primary_10_1002_cbic_202200597 crossref_primary_10_1002_ejic_202000545 crossref_primary_10_1039_D2DT01237E crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_1039_D3DT01893H crossref_primary_10_1021_acscentsci_4c01173 crossref_primary_10_1016_j_ccr_2024_216430 crossref_primary_10_1039_D2CP02128E crossref_primary_10_1039_D2SC01646J crossref_primary_10_1016_j_molstruc_2024_138836 crossref_primary_10_1021_acs_jmedchem_4c01806 crossref_primary_10_1002_ange_202201103 crossref_primary_10_1002_cbic_202400484 crossref_primary_10_1039_D4DT03153A crossref_primary_10_1016_j_poly_2023_116778 crossref_primary_10_1021_acs_jctc_4c00152 crossref_primary_10_1021_acs_jmedchem_3c02485 crossref_primary_10_1016_j_ejmech_2024_116990 crossref_primary_10_1039_D4BM01293C crossref_primary_10_1039_D2QI02678C crossref_primary_10_1039_D3DT04063A crossref_primary_10_1039_D4SC04608K crossref_primary_10_1007_s00775_023_01998_z crossref_primary_10_1016_j_poly_2023_116656 crossref_primary_10_1002_anie_202212689 crossref_primary_10_1039_D1DT03200C crossref_primary_10_1016_j_ejmech_2024_116618 crossref_primary_10_3390_molecules30061274 crossref_primary_10_1021_acscentsci_4c02156 crossref_primary_10_1021_acs_inorgchem_3c02942 crossref_primary_10_1039_D5DT00038F crossref_primary_10_1002_anie_202308803 crossref_primary_10_1021_acs_jpcc_0c09835 crossref_primary_10_1021_acs_jmedchem_2c00141 crossref_primary_10_1039_D4DT01791A crossref_primary_10_1002_anie_202202098 crossref_primary_10_1016_j_mtadv_2022_100251 crossref_primary_10_1002_ejic_202100422 crossref_primary_10_2139_ssrn_4067038 crossref_primary_10_1002_ange_202413506 crossref_primary_10_1002_ange_202303931 crossref_primary_10_1002_aoc_6110 crossref_primary_10_1007_s11426_024_2533_4 crossref_primary_10_1039_D3SC01844J crossref_primary_10_1002_cplu_202000203 crossref_primary_10_1039_D0CC01148G crossref_primary_10_1021_jacs_2c03437 crossref_primary_10_1021_acsnano_2c05379 crossref_primary_10_1007_s11864_023_01120_0 crossref_primary_10_1002_anie_202008432 crossref_primary_10_3390_molecules27206967 crossref_primary_10_1002_chem_202004776 crossref_primary_10_1039_D4QI03369H crossref_primary_10_1002_cbic_202400901 crossref_primary_10_1002_ange_202202098 crossref_primary_10_1002_aoc_7579 crossref_primary_10_1038_s41378_024_00743_z crossref_primary_10_1021_acsabm_0c00050 crossref_primary_10_1039_D0CC08400J crossref_primary_10_1039_D1DT04218A crossref_primary_10_1093_nsr_nwab194 crossref_primary_10_2174_1574892816666210907101146 crossref_primary_10_1016_j_jinorgbio_2021_111394 crossref_primary_10_1016_j_jorganchem_2023_122982 crossref_primary_10_1016_j_ejmech_2020_112632 crossref_primary_10_1021_acs_inorgchem_4c03667 crossref_primary_10_3390_ijms23147624 crossref_primary_10_3390_ijms24097756 crossref_primary_10_3389_fphar_2022_921729 crossref_primary_10_1021_jacs_3c00254 crossref_primary_10_1038_s41467_023_43890_z crossref_primary_10_1002_jbio_70005 crossref_primary_10_1002_mabi_202300457 crossref_primary_10_1021_acs_jmedchem_0c02006 crossref_primary_10_3389_fchem_2022_876410 crossref_primary_10_1002_ange_202319966 crossref_primary_10_1016_j_cbi_2022_109955 crossref_primary_10_1002_cmdc_202100297 crossref_primary_10_1016_j_ccr_2021_213991 crossref_primary_10_1021_acs_inorgchem_3c02245 crossref_primary_10_3390_nano11113089 crossref_primary_10_1038_s41416_020_0926_3 crossref_primary_10_1002_aoc_7465 crossref_primary_10_1002_ange_202112236 crossref_primary_10_1002_agt2_171 crossref_primary_10_1039_D4DT01309C crossref_primary_10_3389_fbioe_2022_837693 crossref_primary_10_1002_adma_202303186 crossref_primary_10_1039_D1DT01460A crossref_primary_10_1039_D0QI00846J crossref_primary_10_1039_D3DT00282A crossref_primary_10_1002_ange_202212689 crossref_primary_10_1124_jpet_121_000798 crossref_primary_10_1002_anie_202401808 crossref_primary_10_1021_acsomega_3c03234 crossref_primary_10_1016_j_molstruc_2023_136699 crossref_primary_10_1039_D4TC04850D crossref_primary_10_1016_j_ccr_2025_216477 crossref_primary_10_1016_j_ica_2020_120125 crossref_primary_10_1016_j_jinorgbio_2021_111408 crossref_primary_10_1021_acsami_3c12827 crossref_primary_10_1002_anie_202319966 crossref_primary_10_1039_D4DT00381K crossref_primary_10_1039_D2CP04937F crossref_primary_10_3390_molecules29184298 crossref_primary_10_1002_anie_202303931 crossref_primary_10_1063_5_0083340 crossref_primary_10_1016_j_jinorgbio_2020_111132 crossref_primary_10_1016_j_jinorgbio_2022_111930 crossref_primary_10_1021_acs_chemrev_2c00062 crossref_primary_10_1002_ange_202400476 crossref_primary_10_1016_j_dyepig_2024_112476 crossref_primary_10_1021_acs_jmedchem_2c02000 crossref_primary_10_1080_00958972_2025_2453061 crossref_primary_10_1039_D3DT01292A crossref_primary_10_1039_D4QI02665A crossref_primary_10_1021_acs_accounts_0c00415 crossref_primary_10_1039_D2DT01719A crossref_primary_10_1002_aoc_7881 crossref_primary_10_1039_D1DT00777G crossref_primary_10_1021_acs_jmedchem_5c00431 crossref_primary_10_1016_j_molliq_2020_114900 crossref_primary_10_1016_j_trechm_2020_10_011 crossref_primary_10_1016_j_ejmech_2024_117077 crossref_primary_10_1021_acsami_4c22606 crossref_primary_10_1002_chem_202402465 crossref_primary_10_1021_acs_inorgchem_1c03770 crossref_primary_10_1002_ange_202006089 crossref_primary_10_1021_acs_chemrev_3c00161 crossref_primary_10_1016_j_ica_2021_120629 crossref_primary_10_1038_s42004_022_00752_x crossref_primary_10_3390_ijms241713468 crossref_primary_10_1016_j_ijpharm_2022_121697 crossref_primary_10_1016_j_cclet_2022_07_009 crossref_primary_10_1021_acs_jctc_4c00061 crossref_primary_10_1002_smll_202410338 crossref_primary_10_1039_D0CP05143H crossref_primary_10_1002_mco2_603 crossref_primary_10_1016_j_dyepig_2023_111077 crossref_primary_10_1021_acs_jmedchem_3c00001 crossref_primary_10_1021_acs_jmedchem_3c00248 crossref_primary_10_1002_asia_202300047 crossref_primary_10_1016_j_jinorgbio_2022_111910 crossref_primary_10_1016_j_ccr_2020_213492 crossref_primary_10_3390_molecules27010148 crossref_primary_10_1002_cbic_202400931 crossref_primary_10_1002_ange_202000528 crossref_primary_10_1002_slct_202003334 crossref_primary_10_1021_acs_inorgchem_3c02162 crossref_primary_10_1039_D1CC00258A crossref_primary_10_1021_acs_jmedchem_2c00880 crossref_primary_10_1177_17475198221090914 crossref_primary_10_1021_acs_chemrev_0c00663 crossref_primary_10_1002_anie_202201103 crossref_primary_10_1002_ejic_202100364 crossref_primary_10_1021_acs_jmedchem_4c01671 crossref_primary_10_1016_j_poly_2024_117318 crossref_primary_10_3390_molecules28020691 crossref_primary_10_3389_fchem_2024_1342772 crossref_primary_10_1002_anie_202400049 crossref_primary_10_3390_ijms25137314 crossref_primary_10_1002_ange_202308803 crossref_primary_10_1007_s00775_023_02003_3 crossref_primary_10_1039_D0QI00991A crossref_primary_10_3390_molecules26185679 crossref_primary_10_1002_advs_202103334 crossref_primary_10_1016_j_ccr_2021_214096 crossref_primary_10_1016_j_ejmech_2023_115816 crossref_primary_10_1039_C9DT03453F crossref_primary_10_3390_molecules27175635 crossref_primary_10_1016_j_ccr_2022_214656 crossref_primary_10_1039_D1RA02581C crossref_primary_10_3390_inorganics12010026 crossref_primary_10_1016_j_ica_2023_121388 crossref_primary_10_1002_anie_202400476 crossref_primary_10_1016_j_ccr_2020_213714 crossref_primary_10_1002_adma_202210363 crossref_primary_10_3390_molecules25215167 crossref_primary_10_1002_asia_202200270 crossref_primary_10_1016_j_molliq_2021_117788 crossref_primary_10_1039_D1CS00609F crossref_primary_10_1021_acs_inorgchem_4c03847 crossref_primary_10_1039_D2CC00341D crossref_primary_10_1007_s00775_023_02017_x crossref_primary_10_1016_j_jorganchem_2024_123044 crossref_primary_10_1016_j_jinorgbio_2022_111852 crossref_primary_10_1016_j_jorganchem_2024_123168 crossref_primary_10_1039_D2NR00757F crossref_primary_10_1021_acs_inorgchem_2c01468 crossref_primary_10_1021_jacs_4c07251 crossref_primary_10_1039_D3CS00227F crossref_primary_10_1007_s00253_024_13120_7 crossref_primary_10_1039_D1SC02941J crossref_primary_10_1002_chem_202102701 crossref_primary_10_1039_D0DT02577A crossref_primary_10_1002_agt2_70020 crossref_primary_10_1007_s00775_021_01899_z crossref_primary_10_1002_ange_202401808 crossref_primary_10_1016_j_biomaterials_2021_120915 crossref_primary_10_3390_inorganics12020058 crossref_primary_10_1002_anie_201916400 crossref_primary_10_1002_cbic_202300652 crossref_primary_10_1021_acs_inorgchem_3c00214 crossref_primary_10_1016_j_ejmech_2021_113770 crossref_primary_10_1002_adma_202002661 crossref_primary_10_1021_acs_joc_2c00956 crossref_primary_10_1016_j_ccr_2023_215320 crossref_primary_10_1016_j_ccr_2025_216572 crossref_primary_10_1039_D1CB00049G crossref_primary_10_1002_ejic_202400309 crossref_primary_10_1021_jacsau_4c00815 crossref_primary_10_1002_slct_202303130 crossref_primary_10_1039_D3NJ02391E crossref_primary_10_3390_cryst14040318 crossref_primary_10_1039_D4SM01334D crossref_primary_10_1016_j_snb_2024_136357 crossref_primary_10_1002_anie_202006089 crossref_primary_10_1002_slct_202302969 crossref_primary_10_1016_j_dyepig_2024_112134 crossref_primary_10_1039_D1NR00773D crossref_primary_10_1002_chem_202401916 crossref_primary_10_3389_fchem_2021_816266 crossref_primary_10_1021_jacs_4c00408 crossref_primary_10_1021_acs_inorgchem_3c03972 crossref_primary_10_1021_acs_inorgchem_3c03610 crossref_primary_10_1039_D0CP05108J crossref_primary_10_1039_D0CC02417A crossref_primary_10_1016_j_dyepig_2023_111782 crossref_primary_10_3390_pharmaceutics13111788 crossref_primary_10_1039_D1DT01088C crossref_primary_10_1002_advs_202302875 crossref_primary_10_1039_D2DT01765B crossref_primary_10_1021_acs_inorgchem_1c00241 crossref_primary_10_1039_D0NJ00209G |
Cites_doi | 10.1039/C8CC09964B 10.1002/ange.201308834 10.1016/S0040-4020(98)00015-5 10.1089/pho.2015.9848 10.1021/jacs.6b05302 10.1016/j.clindermatol.2011.11.019 10.1021/acs.inorgchem.8b00146 10.1039/C7CC03469E 10.1021/jacs.8b13804 10.1016/S0022-5347(17)41302-4 10.1021/ja511420n 10.1002/anie.201703890 10.1016/j.ccr.2014.04.012 10.1002/ange.201003399 10.1002/ange.201813002 10.1039/C1CC15378A 10.1039/c4pp00438h 10.1039/c2cs15273h 10.1002/anie.201604130 10.1016/j.jphotobiol.2009.04.001 10.1002/chem.201701392 10.1002/chem.200501601 10.1002/adma.201600706 10.1039/C8DT01585F 10.1039/c1dt10493d 10.1002/anie.201507281 10.1039/C7CC01459G 10.1039/b307576c 10.1098/rsta.2012.0118 10.1038/nm.2933 10.1002/anie.201806551 10.1002/anie.201813002 10.1002/ange.201500934 10.1039/c3cs60128e 10.1016/j.ccr.2017.10.022 10.1021/om201177y 10.1039/c0dt01485k 10.1038/s41467-018-04318-1 10.1021/acs.inorgchem.6b00554 10.1002/anie.201307505 10.1002/anie.200705319 10.1002/ejic.201000098 10.1021/acschemneuro.7b00083 10.1021/acs.chemrev.8b00211 10.3389/neuro.01.015.2008 10.1016/j.jconrel.2017.08.039 10.1039/C7NR07927C 10.1073/pnas.0707742105 10.1039/C0DT00546K 10.1021/acs.chemrev.5b00597 10.1002/anie.201309576 10.1021/tx900372p 10.1002/ange.200390078 10.1002/ange.19780900716 10.1016/j.ica.2008.02.039 10.1039/C7CC06133A 10.1038/nm.4291 10.1039/C7SC03765A 10.1016/S1359-6446(99)01412-9 10.1021/jacs.7b07427 10.1021/acs.chemrev.8b00396 10.1002/ange.201604130 10.1016/j.ccr.2005.11.011 10.1039/C6CC00918B 10.1038/natrevmats.2016.71 10.1038/oncsis.2015.50 10.1098/rsta.2012.0519 10.1016/j.chembiol.2005.10.011 10.1021/ja205235m 10.1039/C3SC53550A 10.1039/C8CC06496B 10.1002/ange.201806551 10.1016/j.cbpa.2013.01.004 10.1002/ange.201507281 10.1021/ic500299s 10.1016/0165-1218(80)90064-6 10.1039/C5PP00450K 10.1021/ja408426z 10.1021/jacs.8b08658 10.1002/ange.201307505 10.1021/jacs.7b05559 10.1039/C7SC05135B 10.1021/jacs.7b00186 10.1021/jacs.6b13399 10.1002/ange.201704458 10.1016/j.ccr.2018.03.002 10.1021/mp300139y 10.1111/j.1751-1097.2005.tb00193.x 10.1021/acs.inorgchem.8b00529 10.1002/ange.201703890 10.1021/jacs.8b01072 10.1039/C5CC03180J 10.1039/b714216a 10.1002/ange.201709082 10.1021/ja5078359 10.1080/02603594.2014.979286 10.1021/tx300057y 10.1159/000362416 10.1002/anie.201704458 10.1002/anie.197805241 10.1002/cbic.201800182 10.1016/j.jinorgbio.2009.12.004 10.1002/chem.200802206 10.1562/2005-01-19-RA-420 10.1002/anie.200390110 10.1080/2162402X.2015.1008866 10.1002/chem.201502702 10.1016/1040-8428(93)90042-3 10.1021/acs.accounts.7b00180 10.1021/jacs.7b02396 10.1021/ja00050a002 10.1002/anie.201500934 10.1002/anie.201709082 10.1021/ja3009677 10.1002/cmdc.201402066 10.1016/j.jinorgbio.2011.01.003 10.1002/anie.201308834 10.1002/ange.200705319 10.1021/ja3074159 10.1038/nrc3495 10.1158/1535-7163.MCT-11-0959 10.1002/anie.201003399 10.1002/cmdc.201400081 10.1002/ange.201309576 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.201905171 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 73 |
ExternalDocumentID | PMC6973108 31310436 10_1002_anie_201905171 ANIE201905171 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust funderid: 209173/Z/17/Z – fundername: Engineering and Physical Sciences Research Council funderid: EP/G006792, EP/F034210/1 and EP/P030572/1 – fundername: MRC funderid: G0701062 – fundername: Sun Yat-sen University Startup fund funderid: 75110-18841213 – fundername: The Royal Society funderid: NF160307 – fundername: National Science Foundation of China funderid: 21701113 – fundername: Medical Research Council grantid: G0701062 – fundername: Wellcome Trust grantid: 209173/Z/17/Z – fundername: ; grantid: EP/G006792, EP/F034210/1 and EP/P030572/1 – fundername: MRC grantid: G0701062 – fundername: ; grantid: 209173/Z/17/Z – fundername: Sun Yat-sen University Startup fund grantid: 75110-18841213 – fundername: ; grantid: 21701113 – fundername: The Royal Society grantid: NF160307 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM EJD |
ID | FETCH-LOGICAL-c5711-575f0e204950700a7cc41709a82fe454f0aad36c06b9607a23831e50e2a911853 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:33:45 EDT 2025 Fri Jul 11 10:30:53 EDT 2025 Fri Jul 25 10:21:16 EDT 2025 Mon Jul 21 06:03:00 EDT 2025 Tue Jul 01 02:26:53 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Wed Jan 22 16:35:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metal complexes photoactivated chemotherapy photodynamic therapy anticancer |
Language | English |
License | Attribution 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5711-575f0e204950700a7cc41709a82fe454f0aad36c06b9607a23831e50e2a911853 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2921-9490 0000-0002-2091-7954 0000-0001-9160-1941 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905171 |
PMID | 31310436 |
PQID | 2328366300 |
PQPubID | 946352 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973108 proquest_miscellaneous_2258737117 proquest_journals_2328366300 pubmed_primary_31310436 crossref_citationtrail_10_1002_anie_201905171 crossref_primary_10_1002_anie_201905171 wiley_primary_10_1002_anie_201905171_ANIE201905171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2, 2020 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2014 2014; 53 126 2015; 35 2007; 104 2018; 363 2017; 8 2019; 55 2010; 104 2015; 33 2004; 3 2006; 250 2012; 18 2008 2008; 47 120 2008; 2 2012; 11 2014; 136 2018; 47 2013 2013; 52 125 2010; 23 2018; 9 2009; 96 2014; 5 2012; 134 2013; 17 2015; 137 2013; 13 1989; 141 2018 2018; 57 130 1992; 114 1980; 77 2015 2015; 54 127 2019; 119 2016; 116 2009; 362 2014; 9 2012; 25 1998; 54 1978 1978; 17 90 2009; 15 2014; 53 2015; 282 2015; 14 2015; 4 2018; 140 2006; 12 2006; 13 2010 2015; 51 2011; 40 2013; 42 2017; 23 2008 2016; 52 1999; 4 2010 2010; 49 122 2005; 81 2003 2003; 42 115 2017 2017; 56 129 2019; 141 2016; 15 2019 2019; 58 131 2011; 133 2012; 31 2012; 30 2017; 139 2016; 55 2015; 24 1993; 15 2011; 105 2017; 50 2018; 19 2016; 5 2006; 82 2017; 53 2016; 1 2016 2016; 55 128 2013; 33 2015; 21 2019; 378 2013; 135 2013; 371 2016; 138 2012; 48 2017; 264 2016; 28 2018; 54 2018; 10 2012; 41 2012; 9 2018; 57 e_1_2_8_49_2 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_1 e_1_2_8_120_3 e_1_2_8_95_2 e_1_2_8_120_2 e_1_2_8_95_3 e_1_2_8_99_1 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_101_1 e_1_2_8_72_1 e_1_2_8_124_2 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 (e_1_2_8_22_2) 2019; 131 e_1_2_8_21_1 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_1 e_1_2_8_40_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_56_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_121_3 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Shirasu N. (e_1_2_8_128_2) 2013; 33 e_1_2_8_66_3 e_1_2_8_89_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_119_1 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_1 e_1_2_8_81_2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_2 e_1_2_8_55_3 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_32_3 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_122_2 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_23_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_39_2 e_1_2_8_35_2 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_104_2 e_1_2_8_127_2 e_1_2_8_12_1 e_1_2_8_108_1 e_1_2_8_123_2 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 24 start-page: 14 year: 2015 end-page: 28 publication-title: Med. Princ. Pract. – volume: 139 start-page: 5656 year: 2017 end-page: 5659 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2733 year: 2018 end-page: 2739 publication-title: Chem. Sci. – volume: 56 129 start-page: 10717 10857 year: 2017 2017 end-page: 10720 10860 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 1519 year: 2019 end-page: 1624 publication-title: Chem. Rev. – volume: 33 start-page: 2823 year: 2013 end-page: 2831 publication-title: Anticancer Res. – volume: 33 start-page: 183 year: 2015 end-page: 184 publication-title: Photomed. Laser Surg. – volume: 15 start-page: 191 year: 1993 end-page: 219 publication-title: Crit. Rev. Oncol. Hematol. – volume: 23 start-page: 461 year: 2017 end-page: 471 publication-title: Nat. Med. – volume: 25 start-page: 1099 year: 2012 end-page: 1111 publication-title: Chem. Res. Toxicol. – volume: 58 131 start-page: 2350 2372 year: 2019 2019 end-page: 2354 2376 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 250 start-page: 1627 year: 2006 end-page: 1641 publication-title: Coord. Chem. Rev. – volume: 40 start-page: 262 year: 2011 end-page: 268 publication-title: Dalton Trans. – volume: 137 start-page: 1539 year: 2015 end-page: 1547 publication-title: J. Am. Chem. Soc. – start-page: 235 year: 2008 end-page: 237 publication-title: Chem. Commun. – volume: 139 start-page: 15292 year: 2017 end-page: 15295 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 9888 year: 2017 end-page: 9896 publication-title: Chem. Eur. J. – volume: 363 start-page: 17 year: 2018 end-page: 28 publication-title: Coord. Chem. Rev. – volume: 40 start-page: 7571 year: 2011 end-page: 7582 publication-title: Dalton Trans. – volume: 53 start-page: 3272 year: 2014 end-page: 3274 publication-title: Inorg. Chem. – volume: 116 start-page: 3436 year: 2016 end-page: 3486 publication-title: Chem. Rev. – volume: 371 start-page: 1 year: 2013 end-page: 12 publication-title: Philos. Trans. R. Soc. A – volume: 141 start-page: 1341 year: 1989 end-page: 1346 publication-title: J. Urol. – volume: 4 start-page: 507 year: 1999 end-page: 517 publication-title: Drug Discov. Today – volume: 1 start-page: 16071 year: 2016 publication-title: Nat. Rev. Mater. – volume: 19 start-page: 1574 year: 2018 end-page: 1589 publication-title: ChemBioChem – volume: 15 start-page: 1588 year: 2009 end-page: 1596 publication-title: Chem. Eur. J. – volume: 133 start-page: 14098 year: 2011 end-page: 14108 publication-title: J. Am. Chem. Soc. – volume: 371 start-page: 20120118 year: 2013 publication-title: Philos. Trans. R. Soc. A – volume: 9 start-page: 1306 year: 2014 end-page: 1315 publication-title: ChemMedChem – volume: 23 start-page: 413 year: 2010 end-page: 421 publication-title: Chem. Res. Toxicol. – volume: 3 start-page: 17 year: 2004 end-page: 25 publication-title: Photochem. Photobiol. Sci. – volume: 55 128 start-page: 9947 10101 year: 2016 2016 end-page: 9951 10105 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 start-page: 451 year: 2012 end-page: 455 publication-title: Clin. Dermatol. – volume: 53 start-page: 3673 year: 2017 end-page: 3676 publication-title: Chem. Commun. – volume: 28 start-page: 6872 year: 2016 end-page: 6879 publication-title: Adv. Mater. – volume: 54 127 start-page: 13989 14195 year: 2015 2015 end-page: 13993 14199 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 7595 year: 2017 end-page: 7602 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 4151 year: 1998 end-page: 4202 publication-title: Tetrahedron – volume: 52 125 start-page: 13633 13878 year: 2013 2013 end-page: 13637 13882 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 3155 year: 2006 end-page: 3161 publication-title: Chem. Eur. J. – volume: 54 127 start-page: 6483 6583 year: 2015 2015 end-page: 6487 6587 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 12857 year: 2017 end-page: 12877 publication-title: Chem. Commun. – volume: 9 start-page: 502 year: 2018 end-page: 512 publication-title: Chem. Sci. – volume: 134 start-page: 16508 year: 2012 end-page: 16511 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 8905 9089 year: 2010 2010 end-page: 8908 9092 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 11549 11707 year: 2017 2017 end-page: 11553 11711 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 14898 15094 year: 2017 2017 end-page: 14902 15098 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 8324 year: 2012 end-page: 8327 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 652 year: 2011 end-page: 662 publication-title: J. Inorg. Biochem. – volume: 54 start-page: 13845 year: 2018 end-page: 13848 publication-title: Chem. Commun. – start-page: 2224 year: 2010 end-page: 2228 publication-title: Eur. J. Inorg. Chem. – volume: 9 start-page: 2053 year: 2018 publication-title: Nat. Commun. – volume: 136 start-page: 17058 year: 2014 end-page: 17070 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 5670 year: 2018 end-page: 5673 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 14851 year: 2018 end-page: 14859 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1894 year: 2012 end-page: 1904 publication-title: Mol. Cancer Ther. – volume: 2 start-page: 2 year: 2008 publication-title: Front. Neural Circuits – volume: 57 start-page: 4009 year: 2018 end-page: 4022 publication-title: Inorg. Chem. – volume: 55 start-page: 6027 year: 2016 end-page: 6035 publication-title: Inorg. Chem. – volume: 138 start-page: 10968 year: 2016 end-page: 10977 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 797 year: 2019 end-page: 828 publication-title: Chem. Rev. – volume: 53 126 start-page: 2960 3004 year: 2014 2014 end-page: 2963 3007 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 year: 2016 publication-title: Oncogenesis – volume: 17 90 start-page: 524 554 year: 1978 1978 end-page: 525 555 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 139 start-page: 2512 year: 2017 end-page: 2519 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 179 year: 2015 end-page: 213 publication-title: Comments Inorg. Chem. – volume: 17 start-page: 175 year: 2013 end-page: 188 publication-title: Curr. Opin. Chem. Biol. – volume: 104 start-page: 418 year: 2010 end-page: 422 publication-title: J. Inorg. Biochem. – volume: 42 115 start-page: 335 349 year: 2003 2003 end-page: 339 353 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 264 start-page: 192 year: 2017 end-page: 202 publication-title: J. Control. Release – volume: 8 start-page: 1036 year: 2017 end-page: 1042 publication-title: ACS Chem. Neurosci. – volume: 141 start-page: 4204 year: 2019 end-page: 4208 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 5342 year: 2011 end-page: 5351 publication-title: Dalton Trans. – volume: 42 start-page: 8629 year: 2013 end-page: 8648 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1169 year: 2014 end-page: 1175 publication-title: ChemMedChem – volume: 53 start-page: 6768 year: 2017 end-page: 6771 publication-title: Chem. Commun. – volume: 96 start-page: 1 year: 2009 end-page: 8 publication-title: J. Photochem. Photobiol. B – volume: 47 120 start-page: 3735 3795 year: 2008 2008 end-page: 3739 3799 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 3466 year: 2012 end-page: 3479 publication-title: Organometallics – volume: 5 start-page: 4044 year: 2014 end-page: 4056 publication-title: Chem. Sci. – volume: 21 start-page: 15224 year: 2015 end-page: 15234 publication-title: Chem. Eur. J. – volume: 14 start-page: 2014 year: 2015 end-page: 2023 publication-title: Photochem. Photobiol. Sci. – volume: 51 start-page: 9169 year: 2015 end-page: 9172 publication-title: Chem. Commun. – volume: 13 start-page: 342 year: 2013 end-page: 355 publication-title: Nat. Rev. Cancer – volume: 15 start-page: 481 year: 2016 end-page: 495 publication-title: Photochem. Photobiol. Sci. – volume: 48 start-page: 1863 year: 2012 end-page: 1865 publication-title: Chem. Commun. – volume: 362 start-page: 811 year: 2009 end-page: 819 publication-title: Inorg. Chim. Acta – volume: 57 start-page: 5575 year: 2018 end-page: 5584 publication-title: Inorg. Chem. – volume: 77 start-page: 293 year: 1980 end-page: 299 publication-title: Mutat. Res. – volume: 53 126 start-page: 1012 1030 year: 2014 2014 end-page: 1016 1034 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 1580 year: 2012 end-page: 1585 publication-title: Nat. Med. – volume: 41 start-page: 3742 year: 2012 end-page: 3752 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 3148 year: 2019 end-page: 3151 publication-title: Chem. Commun. – volume: 139 start-page: 10992 year: 2017 end-page: 10995 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 4557 year: 2016 end-page: 4560 publication-title: Chem. Commun. – volume: 57 130 start-page: 9885 10033 year: 2018 2018 end-page: 9890 10038 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 282 start-page: 127 year: 2015 end-page: 138 publication-title: Coord. Chem. Rev. – volume: 47 start-page: 10330 year: 2018 end-page: 10343 publication-title: Dalton Trans. – volume: 81 start-page: 342 year: 2005 end-page: 351 publication-title: Photochem. Photobiol. – volume: 13 start-page: 61 year: 2006 end-page: 67 publication-title: Chem. Biol. – volume: 4 year: 2015 publication-title: Oncoimmunology – volume: 135 start-page: 17161 year: 2013 end-page: 17175 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 66 year: 2019 end-page: 86 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 2950 year: 2012 end-page: 2955 publication-title: Mol. Pharm. – volume: 104 start-page: 20743 year: 2007 end-page: 20748 publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 237 year: 2006 end-page: 247 publication-title: Photochem. Photobiol. – volume: 114 start-page: 9253 year: 1992 end-page: 9265 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1517 year: 2018 end-page: 1531 publication-title: Nanoscale – volume: 50 start-page: 2727 year: 2017 end-page: 2736 publication-title: Acc. Chem. Res. – ident: e_1_2_8_24_1 doi: 10.1039/C8CC09964B – ident: e_1_2_8_84_1 – ident: e_1_2_8_99_2 doi: 10.1002/ange.201308834 – ident: e_1_2_8_3_1 doi: 10.1016/S0040-4020(98)00015-5 – ident: e_1_2_8_37_1 – ident: e_1_2_8_2_1 doi: 10.1089/pho.2015.9848 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.6b05302 – ident: e_1_2_8_1_1 doi: 10.1016/j.clindermatol.2011.11.019 – ident: e_1_2_8_64_2 doi: 10.1021/acs.inorgchem.8b00146 – ident: e_1_2_8_27_1 doi: 10.1039/C7CC03469E – ident: e_1_2_8_124_2 doi: 10.1021/jacs.8b13804 – ident: e_1_2_8_112_1 doi: 10.1016/S0022-5347(17)41302-4 – ident: e_1_2_8_114_2 doi: 10.1021/ja511420n – ident: e_1_2_8_55_2 doi: 10.1002/anie.201703890 – ident: e_1_2_8_8_2 doi: 10.1016/j.ccr.2014.04.012 – ident: e_1_2_8_32_3 doi: 10.1002/ange.201003399 – volume: 131 start-page: 2372 year: 2019 ident: e_1_2_8_22_2 publication-title: Angew. Chem. doi: 10.1002/ange.201813002 – ident: e_1_2_8_45_1 doi: 10.1039/C1CC15378A – ident: e_1_2_8_9_2 doi: 10.1039/c4pp00438h – ident: e_1_2_8_48_2 doi: 10.1039/c2cs15273h – ident: e_1_2_8_126_1 – ident: e_1_2_8_117_1 doi: 10.1002/anie.201604130 – ident: e_1_2_8_7_2 doi: 10.1016/j.jphotobiol.2009.04.001 – ident: e_1_2_8_110_1 doi: 10.1002/chem.201701392 – ident: e_1_2_8_29_2 doi: 10.1002/chem.200501601 – ident: e_1_2_8_113_1 – ident: e_1_2_8_104_2 doi: 10.1002/adma.201600706 – ident: e_1_2_8_26_1 doi: 10.1039/C8DT01585F – ident: e_1_2_8_80_1 doi: 10.1039/c1dt10493d – ident: e_1_2_8_46_1 doi: 10.1002/anie.201507281 – ident: e_1_2_8_57_2 doi: 10.1039/C7CC01459G – ident: e_1_2_8_17_1 doi: 10.1039/b307576c – ident: e_1_2_8_79_1 doi: 10.1098/rsta.2012.0118 – ident: e_1_2_8_108_1 doi: 10.1038/nm.2933 – ident: e_1_2_8_120_2 doi: 10.1002/anie.201806551 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201813002 – ident: e_1_2_8_53_1 – ident: e_1_2_8_95_3 doi: 10.1002/ange.201500934 – ident: e_1_2_8_129_1 doi: 10.1039/c3cs60128e – ident: e_1_2_8_14_2 doi: 10.1016/j.ccr.2017.10.022 – ident: e_1_2_8_39_2 doi: 10.1021/om201177y – ident: e_1_2_8_78_1 doi: 10.1039/c0dt01485k – ident: e_1_2_8_100_1 doi: 10.1038/s41467-018-04318-1 – ident: e_1_2_8_35_2 doi: 10.1021/acs.inorgchem.6b00554 – ident: e_1_2_8_82_1 doi: 10.1002/anie.201307505 – ident: e_1_2_8_23_1 doi: 10.1002/anie.200705319 – ident: e_1_2_8_65_2 doi: 10.1002/ejic.201000098 – ident: e_1_2_8_60_2 doi: 10.1021/acschemneuro.7b00083 – ident: e_1_2_8_111_1 doi: 10.1021/acs.chemrev.8b00211 – ident: e_1_2_8_61_2 doi: 10.3389/neuro.01.015.2008 – ident: e_1_2_8_51_2 doi: 10.1016/j.jconrel.2017.08.039 – ident: e_1_2_8_6_1 – ident: e_1_2_8_105_2 doi: 10.1039/C7NR07927C – ident: e_1_2_8_30_2 doi: 10.1073/pnas.0707742105 – ident: e_1_2_8_77_2 doi: 10.1039/C0DT00546K – ident: e_1_2_8_68_1 doi: 10.1021/acs.chemrev.5b00597 – ident: e_1_2_8_47_1 – ident: e_1_2_8_66_2 doi: 10.1002/anie.201309576 – ident: e_1_2_8_41_1 – ident: e_1_2_8_71_1 doi: 10.1021/tx900372p – ident: e_1_2_8_81_2 doi: 10.1002/ange.200390078 – ident: e_1_2_8_70_2 doi: 10.1002/ange.19780900716 – ident: e_1_2_8_31_2 doi: 10.1016/j.ica.2008.02.039 – ident: e_1_2_8_109_1 doi: 10.1039/C7CC06133A – ident: e_1_2_8_97_1 doi: 10.1038/nm.4291 – ident: e_1_2_8_122_2 doi: 10.1039/C7SC03765A – ident: e_1_2_8_11_1 doi: 10.1016/S1359-6446(99)01412-9 – ident: e_1_2_8_52_2 doi: 10.1021/jacs.7b07427 – ident: e_1_2_8_96_1 doi: 10.1021/acs.chemrev.8b00396 – ident: e_1_2_8_117_2 doi: 10.1002/ange.201604130 – volume: 33 start-page: 2823 year: 2013 ident: e_1_2_8_128_2 publication-title: Anticancer Res. – ident: e_1_2_8_36_1 doi: 10.1016/j.ccr.2005.11.011 – ident: e_1_2_8_63_2 doi: 10.1039/C6CC00918B – ident: e_1_2_8_101_1 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_8_25_1 doi: 10.1038/oncsis.2015.50 – ident: e_1_2_8_4_1 doi: 10.1098/rsta.2012.0519 – ident: e_1_2_8_62_1 – ident: e_1_2_8_91_1 doi: 10.1016/j.chembiol.2005.10.011 – ident: e_1_2_8_103_1 – ident: e_1_2_8_38_2 doi: 10.1021/ja205235m – ident: e_1_2_8_67_2 doi: 10.1039/C3SC53550A – ident: e_1_2_8_88_2 doi: 10.1039/C8CC06496B – ident: e_1_2_8_93_1 – ident: e_1_2_8_120_3 doi: 10.1002/ange.201806551 – ident: e_1_2_8_127_2 doi: 10.1016/j.cbpa.2013.01.004 – ident: e_1_2_8_46_2 doi: 10.1002/ange.201507281 – ident: e_1_2_8_54_2 doi: 10.1021/ic500299s – ident: e_1_2_8_28_1 – ident: e_1_2_8_92_1 doi: 10.1016/0165-1218(80)90064-6 – ident: e_1_2_8_20_1 doi: 10.1039/C5PP00450K – ident: e_1_2_8_13_1 – ident: e_1_2_8_58_1 – ident: e_1_2_8_107_1 doi: 10.1021/ja408426z – ident: e_1_2_8_123_2 doi: 10.1021/jacs.8b08658 – ident: e_1_2_8_82_2 doi: 10.1002/ange.201307505 – ident: e_1_2_8_115_2 doi: 10.1021/jacs.7b05559 – ident: e_1_2_8_85_2 doi: 10.1039/C7SC05135B – ident: e_1_2_8_102_1 doi: 10.1021/jacs.7b00186 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.6b13399 – ident: e_1_2_8_121_3 doi: 10.1002/ange.201704458 – ident: e_1_2_8_15_2 doi: 10.1016/j.ccr.2018.03.002 – ident: e_1_2_8_49_2 doi: 10.1021/mp300139y – ident: e_1_2_8_119_1 – ident: e_1_2_8_5_1 doi: 10.1111/j.1751-1097.2005.tb00193.x – ident: e_1_2_8_75_1 – ident: e_1_2_8_86_2 doi: 10.1021/acs.inorgchem.8b00529 – ident: e_1_2_8_55_3 doi: 10.1002/ange.201703890 – ident: e_1_2_8_116_2 doi: 10.1021/jacs.8b01072 – ident: e_1_2_8_98_1 doi: 10.1039/C5CC03180J – ident: e_1_2_8_76_2 doi: 10.1039/b714216a – ident: e_1_2_8_18_2 doi: 10.1002/ange.201709082 – ident: e_1_2_8_42_2 doi: 10.1021/ja5078359 – ident: e_1_2_8_50_1 – ident: e_1_2_8_106_1 doi: 10.1080/02603594.2014.979286 – ident: e_1_2_8_83_1 doi: 10.1021/tx300057y – ident: e_1_2_8_16_1 doi: 10.1159/000362416 – ident: e_1_2_8_121_2 doi: 10.1002/anie.201704458 – ident: e_1_2_8_70_1 doi: 10.1002/anie.197805241 – ident: e_1_2_8_12_1 doi: 10.1002/cbic.201800182 – ident: e_1_2_8_59_2 doi: 10.1016/j.jinorgbio.2009.12.004 – ident: e_1_2_8_74_1 doi: 10.1002/chem.200802206 – ident: e_1_2_8_44_2 doi: 10.1562/2005-01-19-RA-420 – ident: e_1_2_8_81_1 doi: 10.1002/anie.200390110 – ident: e_1_2_8_94_2 doi: 10.1080/2162402X.2015.1008866 – ident: e_1_2_8_34_2 doi: 10.1002/chem.201502702 – ident: e_1_2_8_69_1 doi: 10.1016/1040-8428(93)90042-3 – ident: e_1_2_8_10_2 doi: 10.1021/acs.accounts.7b00180 – ident: e_1_2_8_118_1 doi: 10.1021/jacs.7b02396 – ident: e_1_2_8_33_1 – ident: e_1_2_8_43_2 doi: 10.1021/ja00050a002 – ident: e_1_2_8_95_2 doi: 10.1002/anie.201500934 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201709082 – ident: e_1_2_8_40_2 doi: 10.1021/ja3009677 – ident: e_1_2_8_90_1 doi: 10.1002/cmdc.201402066 – ident: e_1_2_8_72_1 doi: 10.1016/j.jinorgbio.2011.01.003 – ident: e_1_2_8_99_1 doi: 10.1002/anie.201308834 – ident: e_1_2_8_23_2 doi: 10.1002/ange.200705319 – ident: e_1_2_8_89_2 doi: 10.1021/ja3074159 – ident: e_1_2_8_125_1 doi: 10.1038/nrc3495 – ident: e_1_2_8_73_1 doi: 10.1158/1535-7163.MCT-11-0959 – ident: e_1_2_8_32_2 doi: 10.1002/anie.201003399 – ident: e_1_2_8_56_2 doi: 10.1002/cmdc.201400081 – ident: e_1_2_8_66_3 doi: 10.1002/ange.201309576 – ident: e_1_2_8_87_1 |
SSID | ssj0028806 |
Score | 2.6859035 |
SecondaryResourceType | review_article |
Snippet | In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | anticancer Chemical compounds Chemotherapy Coordination Complexes - chemistry Coordination compounds Drugs Humans Irradiation Light irradiation Metal complexes Metals - chemistry Minireview Minireviews Oxidation photoactivated chemotherapy Photochemicals Photochemotherapy - methods Photodynamic therapy Prodrugs Radiation Selectivity Transition metal compounds Valence |
Title | New Designs for Phototherapeutic Transition Metal Complexes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905171 https://www.ncbi.nlm.nih.gov/pubmed/31310436 https://www.proquest.com/docview/2328366300 https://www.proquest.com/docview/2258737117 https://pubmed.ncbi.nlm.nih.gov/PMC6973108 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_UF33x-6M6RwXBp2qbtE2HT2NuqDAZ4mBvJY0pitKJ60D8671L17oqIuhjyYW2yd3ll-TudwDHCW6rWOoxJ_VboeNzJp1It-gKMeLKaA2nbOT-TXg59K9HwWgui7_gh6gO3MgyjL8mA5fJ5OyTNJQysCk0iwimTBI5BWwRKrqt-KMYKmeRXsS5Q1XoS9ZGl53Vu9dXpW9Q83vE5DySNUtRbw1k-RNFBMrT6TRPTtX7F37H__zlOqzOcKrdLhRrAxZ0tgnLnbI83Baco3u0L0z8x8RG5GsPHsb5fDqXbZZBExFm9zVifJt8z7N-05NtGPa6d51LZ1aJwVGB8DwHMV3qaoa7CYSPriuFUr4n3JbEedZ-4KeulPc8VG6Y4I5ISMQB3NMBdpHoTBER7MBSNs70HtgiTQPlaaGZInY17Kc0EcrIe6ETdC8WOOVMxGpGU07VMp7jgmCZxTQkcTUkFpxU8i8FQcePko1yYuOZoU5iBJQRD4l3zIKjqhmHku5NZKbHU5RhQSQ4joOwYLfQg-pV3EN87PPQAlHTkEqA6LvrLdnjg6HxDqlqmBtZwIwC_PL1cfvmqls97f-l0wGsMDotoAMk1oCl_HWqDxFS5UkTFpk_aBrj-QC0Bhdt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kPuiL3x_1s4LgU7VN2qbDp7EpU7chouBbSbOUidKJ20D8671L17o5RNDHkgttk7vLL8nd7wCOE9xWsdRjTupXQ8fnTDqRrtIVYsSV0RpO2cjtTth88K8fgyKakHJhcn6I8sCNLMP4azJwOpA--2INpRRsis0ihinKIp-nst5En9-4KxmkGKpnnmDEuUN16AveRpedTfefXpdmwOZszOQkljWL0eUyJMVv5DEoz6ejYXKqPr4xPP7rP1dgaQxV7VquW6swp7M1WKgXFeLW4Rw9pN0wISADG8GvfdvrDyczumyzEpqgMLutEebb5H5e9LsebMDD5cV9vemMizE4KhCe5yCsS13NcEOBCNJ1pVDK94RblTjV2g_81JWyy0PlhgluioREKMA9HWAXif4UQcEmVLJ-prfBFmkaKE8LzRQRrGE_pYlTRnaFTtDDWOAUUxGrMVM5Fcx4iXOOZRbTkMTlkFhwUsq_5hwdP0ruFTMbj211ECOmjHhI1GMWHJXNOJR0dSIz3R-hDAsiwXEchAVbuSKUr-IeQmSfhxaIKRUpBYjBe7ole-oZJu-QCoe5kQXMaMAvXx_XOlcX5dPOXzodwkLzvt2KW1edm11YZHR4QOdJbA8qw7eR3keENUwOjA19ApB7GrI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kgvoifludWkHwqaxN2qbDJ9kHm7qxBwd7K1mWMmF0w23gn-9d2tWNIYKPJRda7pK7X5q73wE8DPFYxRKPOYlfDR2fM-lEukpXiBFXZtVwqkbudMNW338ZBIO1Kv6MH6L44UY7w_hr2uCzUVL5IQ2lCmxKzSKCKSoi36UbP0rqYn6vOHLh6szqizh3qA39irbRZZXN-ZthaQtrbqdMrkNZE4uaR3CYg0j7ObP6Mezo9AT2a6vebafwhL7LrpvkjLmNsNTujaeL9Vor28Qok65ldzQCcJscw0R_6fkZ9JuN91rLydskOCoQnucg4EpczRDqI7ZzXSmU8j3hViUaQfuBn7hSjnio3HCIxxUhMUhzTwc4RaKnw3B9DqV0mupLsEWSBMrTQjNF1Gc4T2lie5EjoYe49y1wVlqKVc4hTq0sJnHGfsxi0mpcaNWCx0J-lrFn_CpZXik9znfRPEa0F_GQSMEsuC-GUZV0qSFTPV2iDAsiwVEPwoKLzEbFq7iH4NXnoQViw3qFAHFrb46kH2PDsR1SSy83soAZO__x9fFzt90onq7-M-kO9nr1ZvzW7r5ewwGjUz396GFlKC0-l_oGoc9ieGtW9zeccPf1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Designs+for+Phototherapeutic+Transition+Metal+Complexes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Imberti%2C+Cinzia&rft.au=Zhang%2C+Pingyu&rft.au=Huang%2C+Huaiyi&rft.au=Sadler%2C+Peter+J&rft.date=2020-01-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=1&rft.spage=61&rft.epage=73&rft_id=info:doi/10.1002%2Fanie.201905171&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |