Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation
[Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were...
Saved in:
Published in | Colloids and surfaces, B, Biointerfaces Vol. 143; pp. 415 - 422 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were promoted by electrospun tilapia collagen nanofibers.•The electrospun tilapia collagen nanofibers could accelerate skin wound healing rapidly and effectively in the rat model.
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. |
---|---|
AbstractList | The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. [Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were promoted by electrospun tilapia collagen nanofibers.•The electrospun tilapia collagen nanofibers could accelerate skin wound healing rapidly and effectively in the rat model. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two alpha -peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72 plus or minus 0.44MPa and 26.71 plus or minus 4.88 degree , respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4⁺/CD8⁺ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. |
Author | Zhou, Tian Mo, Xiumei Wang, Nanping Xue, Yang Ding, Tingting Liu, Xin Sun, Jiao |
Author_xml | – sequence: 1 givenname: Tian surname: Zhou fullname: Zhou, Tian organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China – sequence: 2 givenname: Nanping surname: Wang fullname: Wang, Nanping organization: Shanghai Fisheries Research Institute, Shanghai 200433, China – sequence: 3 givenname: Yang surname: Xue fullname: Xue, Yang organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China – sequence: 4 givenname: Tingting surname: Ding fullname: Ding, Tingting organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China – sequence: 5 givenname: Xin surname: Liu fullname: Liu, Xin organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China – sequence: 6 givenname: Xiumei surname: Mo fullname: Mo, Xiumei email: xmm@dhu.edu.cn organization: College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China – sequence: 7 givenname: Jiao surname: Sun fullname: Sun, Jiao email: jiaosun59@126.com organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27037778$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1DlyGXD2E7iROIAqgpUqsQFzpb_TIoXr73YSaue-Oo4u91LL8vJetbvjccz74KchRiQkCsKNQXafdjUJvo8p1HXrOgaeA0te0VWtBd83fBOnJEVDEyshejac3KR8wYAWEPFG3LOBHAhRL8if288minFvJtDNTmvdk5VpbRX9xiqoEIcncaUK2UMekxqcuG-eoxzsNUvVH5RD8Xigp3NIn4fmGieJszVLkXvxv1VDJUqJuvGojFMbn_3lrwelc_47vm8JD-_3Py4_ra--_719vrz3dq0AqY1Uj2osUGkYHTfKcMFFwNY3Tdtq9hgreamUdZyRGZbyzlXAgQbtNLQasovyftD3dLRnxnzJLculx95FTDOWbJlOANvYTiJ0p52ALyn7DRaehyWRul_oL2AvuMUCnr1jM56i1buktuq9CSPWyvAxwNgyuJywlEaN-3HOSXlvKQgl5DIjTyGRC4hkcBlCUmxdy_sxxdOGj8djFg29eAwyWwcBoPWpZIiaaM7VeIfmJ_dyQ |
CitedBy_id | crossref_primary_10_1080_00405000_2021_1957277 crossref_primary_10_3389_fbioe_2021_730938 crossref_primary_10_1002_jbm_a_37154 crossref_primary_10_2147_IJN_S485588 crossref_primary_10_1088_1757_899X_932_1_012021 crossref_primary_10_3390_polym13142319 crossref_primary_10_1186_s40779_017_0143_4 crossref_primary_10_1002_cbdv_202400615 crossref_primary_10_1126_sciadv_abn1646 crossref_primary_10_1080_10408398_2020_1839855 crossref_primary_10_1016_j_msec_2021_112202 crossref_primary_10_1093_jscr_rjz181 crossref_primary_10_1002_adem_202301297 crossref_primary_10_1016_j_carbpol_2022_119666 crossref_primary_10_1080_17425247_2021_1823966 crossref_primary_10_1038_s41598_018_34684_1 crossref_primary_10_1080_00914037_2024_2408484 crossref_primary_10_1088_1748_605X_aa7b55 crossref_primary_10_1021_acs_biomac_1c00013 crossref_primary_10_1016_j_msec_2018_04_021 crossref_primary_10_1016_j_mtchem_2024_102295 crossref_primary_10_3390_molecules28083394 crossref_primary_10_3390_md18100511 crossref_primary_10_12688_materialsopenres_17568_1 crossref_primary_10_3139_113_110616 crossref_primary_10_3390_fishes9110462 crossref_primary_10_12688_materialsopenres_17568_2 crossref_primary_10_1186_s40580_019_0209_y crossref_primary_10_1016_j_bioadv_2024_214023 crossref_primary_10_1016_j_ijbiomac_2024_137806 crossref_primary_10_1109_TNB_2018_2884279 crossref_primary_10_1016_j_bioactmat_2022_07_006 crossref_primary_10_3390_md22020060 crossref_primary_10_1007_s11595_020_2367_5 crossref_primary_10_3390_ma14061322 crossref_primary_10_1155_2017_6341710 crossref_primary_10_3390_md17010033 crossref_primary_10_1016_j_sciaf_2024_e02245 crossref_primary_10_1002_app_47738 crossref_primary_10_1016_j_actbio_2022_01_009 crossref_primary_10_1016_j_matpr_2022_03_174 crossref_primary_10_1007_s42765_022_00137_8 crossref_primary_10_3390_polym13244368 crossref_primary_10_1016_j_colsurfb_2017_05_001 crossref_primary_10_1016_j_matdes_2020_108947 crossref_primary_10_1016_j_archoralbio_2023_105793 crossref_primary_10_1016_j_mehy_2022_110889 crossref_primary_10_1016_j_msec_2020_110963 crossref_primary_10_1016_j_ijbiomac_2018_01_179 crossref_primary_10_3390_md20010061 crossref_primary_10_1002_jbm_b_35059 crossref_primary_10_1007_s40883_024_00332_6 crossref_primary_10_1038_s43246_024_00488_2 crossref_primary_10_1016_j_ijbiomac_2018_01_217 crossref_primary_10_3389_fmars_2022_863310 crossref_primary_10_1007_s12257_024_00032_6 crossref_primary_10_1007_s42765_022_00170_7 crossref_primary_10_1038_cddis_2016_152 crossref_primary_10_1016_j_ijbiomac_2024_133032 crossref_primary_10_1016_j_susmat_2025_e01355 crossref_primary_10_2174_1381612829666230524153002 crossref_primary_10_1016_j_jid_2018_03_1521 crossref_primary_10_3390_ma16041438 crossref_primary_10_1016_j_msec_2018_05_045 crossref_primary_10_1080_00914037_2024_2429576 crossref_primary_10_1002_mabi_201600300 crossref_primary_10_3390_polym16182668 crossref_primary_10_2174_2468187313666230817151543 crossref_primary_10_1007_s10965_021_02415_2 crossref_primary_10_1016_j_ijbiomac_2021_01_051 crossref_primary_10_1016_j_jconrel_2022_07_005 crossref_primary_10_1080_10408398_2020_1751585 crossref_primary_10_3390_bioengineering10020204 crossref_primary_10_1039_C9CS00653B crossref_primary_10_1016_j_carbpol_2017_03_053 crossref_primary_10_1016_j_actbio_2020_02_022 crossref_primary_10_4103_ijb_ijb_31_21 crossref_primary_10_1016_j_jbiosc_2019_02_004 crossref_primary_10_1080_17434440_2022_2075730 crossref_primary_10_52711_0974_360X_2023_00415 crossref_primary_10_1016_j_cvex_2019_06_002 crossref_primary_10_1016_j_psep_2024_08_035 crossref_primary_10_5021_ad_2022_34_1_46 crossref_primary_10_1002_adfm_201909045 crossref_primary_10_1002_jbm_a_36656 crossref_primary_10_1016_j_colsurfb_2021_112238 crossref_primary_10_61873_KJDF4893 crossref_primary_10_1016_j_omtn_2020_11_017 crossref_primary_10_1021_acsami_9b13271 crossref_primary_10_1038_s41538_022_00168_w crossref_primary_10_1177_0391398819877191 crossref_primary_10_1002_jbm_b_35399 crossref_primary_10_1016_j_jddst_2023_105156 crossref_primary_10_3390_membranes11120908 crossref_primary_10_4012_dmj_2020_446 crossref_primary_10_1016_j_biopha_2016_06_016 crossref_primary_10_1177_0885328217739562 crossref_primary_10_1016_j_apmt_2024_102332 crossref_primary_10_1016_j_ijbiomac_2020_08_059 crossref_primary_10_1016_j_mtcomm_2024_108706 crossref_primary_10_1016_j_carbpol_2021_117675 crossref_primary_10_1002_adfm_201804943 crossref_primary_10_1007_s11468_023_01863_4 crossref_primary_10_1016_j_biomaterials_2019_119633 crossref_primary_10_1007_s42765_020_00034_y crossref_primary_10_1016_j_msec_2020_110994 crossref_primary_10_1080_10408398_2022_2067829 crossref_primary_10_1016_j_ijbiomac_2023_125772 crossref_primary_10_1016_j_eurpolymj_2018_10_013 crossref_primary_10_1016_j_msec_2018_06_021 crossref_primary_10_1016_j_jmig_2019_09_779 crossref_primary_10_1186_s12917_020_02566_2 crossref_primary_10_1039_D2BM00646D crossref_primary_10_1155_2021_1907914 crossref_primary_10_1016_j_jconrel_2021_07_017 crossref_primary_10_1021_acs_biomac_3c01137 crossref_primary_10_1039_C8BM00492G crossref_primary_10_1080_10498850_2022_2048332 crossref_primary_10_1111_jocd_15912 crossref_primary_10_1007_s42242_024_00311_4 crossref_primary_10_1016_j_carbpol_2019_115786 crossref_primary_10_3390_md15040102 crossref_primary_10_1016_j_ijbiomac_2019_12_275 crossref_primary_10_1016_j_msec_2021_112503 crossref_primary_10_1021_acsabm_0c01538 crossref_primary_10_1080_00914037_2024_2402364 crossref_primary_10_1016_j_nanoso_2018_03_013 crossref_primary_10_1093_jbcr_irz205 crossref_primary_10_1002_jccs_202000153 crossref_primary_10_1089_ten_tea_2016_0504 crossref_primary_10_4103_denthyp_denthyp_13_24 crossref_primary_10_1016_j_msec_2021_112340 crossref_primary_10_1016_j_pmatsci_2024_101350 crossref_primary_10_1016_j_cis_2022_102827 crossref_primary_10_3390_ma10080929 crossref_primary_10_1016_j_ijpharm_2021_121368 crossref_primary_10_1016_j_copbio_2021_10_011 crossref_primary_10_1016_j_msec_2017_03_118 crossref_primary_10_1016_j_jddst_2023_105091 crossref_primary_10_1177_0885328218820180 crossref_primary_10_1021_acsabm_1c00685 crossref_primary_10_1007_s12221_022_4275_0 crossref_primary_10_1002_term_2928 crossref_primary_10_1007_s11033_024_09750_9 crossref_primary_10_61096_ijamscr_v12_iss3_2024_311_319 crossref_primary_10_1007_s40496_020_00286_y crossref_primary_10_3390_polym12102230 crossref_primary_10_1002_app_53910 crossref_primary_10_1155_2020_6265701 |
Cites_doi | 10.1016/j.foodchem.2008.06.020 10.1002/jbm.a.34434 10.1055/s-0029-1220646 10.1021/bm401780v 10.1016/j.colsurfb.2012.09.041 10.1007/s10266-014-0186-x 10.1016/j.colsurfb.2013.09.019 10.2220/biomedres.32.29 10.1016/j.saa.2015.01.003 10.1016/j.jcrs.2003.11.032 10.1016/j.ijbiomac.2013.03.002 10.1016/j.foodchem.2006.09.053 10.33549/physiolres.931302 10.1111/j.1750-3841.2007.00478.x 10.1007/s00726-010-0715-z 10.1016/S0141-8130(03)00054-0 10.1016/j.foodhyd.2011.02.007 10.1016/j.actbio.2010.09.014 10.1002/jbm.b.32746 10.1016/j.foodchem.2013.10.094 10.1016/j.biomaterials.2014.02.046 10.1002/jbm.a.31304 10.1016/j.ijbiomac.2007.08.003 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7U5 8BQ JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.colsurfb.2016.03.052 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database Engineering Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Chemistry Medicine |
EISSN | 1873-4367 |
EndPage | 422 |
ExternalDocumentID | 27037778 10_1016_j_colsurfb_2016_03_052 S0927776516302089 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABNEU ABNUV ABUDA ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SSG SSK SSM SSQ SSU SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRDE AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SMS SSH VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7QO 8FD FR3 P64 7SR 7U5 8BQ JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c570t-e1b9af4ee10cb86ac373790db8455a29ddb3c4add3ee2d5d333a70729bab05b13 |
IEDL.DBID | .~1 |
ISSN | 0927-7765 1873-4367 |
IngestDate | Thu Jul 10 23:51:11 EDT 2025 Tue Aug 05 09:31:47 EDT 2025 Thu Jul 10 17:23:14 EDT 2025 Sun Aug 24 03:59:49 EDT 2025 Wed Feb 19 01:56:22 EST 2025 Tue Jul 01 01:05:36 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Fri Feb 23 02:31:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HaCaTs differentiation Rat model Skin wound healing Electrospun tilapia collagen nanofibers |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-e1b9af4ee10cb86ac373790db8455a29ddb3c4add3ee2d5d333a70729bab05b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27037778 |
PQID | 1787086310 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000293509 proquest_miscellaneous_1816003812 proquest_miscellaneous_1790937901 proquest_miscellaneous_1787086310 pubmed_primary_27037778 crossref_citationtrail_10_1016_j_colsurfb_2016_03_052 crossref_primary_10_1016_j_colsurfb_2016_03_052 elsevier_sciencedirect_doi_10_1016_j_colsurfb_2016_03_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Colloids and surfaces, B, Biointerfaces |
PublicationTitleAlternate | Colloids Surf B Biointerfaces |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gómez-Guillén, Giménez, López-Caballero, Montero (bib0030) 2011; 25 Liu, Sun (bib0130) 2014; 15 Matsumoto, Ikeda, Yamaya, Yamashita, Saito, Hoshino, Koga, Enari, Suto, Yotsuyanagi (bib0020) 2011; 32 Wang, An, Xin, Zhao, Hu (bib0065) 2007; 72 Chen, Hirota, Okuda, Takeguchi, Kobayashi, Hanagata, Ikoma (bib0055) 2011; 7 Tian, Hosseinkhani, Hosseinkhani, Khademhosseini, Yokoyama, Estrada, Kobayashi (bib0115) 2008; 84 Archana, Dutta, Dutta (bib0120) 2013; 57 Minh Thuy le, Okazaki, Osako (bib0075) 2014; 149 Duan, Feng, Guo, Wang, Zhao, Zhou, Liu, Cao, Zhang (bib0100) 2013; 8 Pabst, Lehmann, Walter, Krüger, Stratul, Kasaj (bib0015) 2016; 104 Muthukumar, Senthil, Sastry (bib0050) 2013; 102 Parcells, Karcich, Granick, Marano (bib0005) 2014; 14 Duan, Zhang, Du, Yao, Konno (bib0035) 2009; 112 Muthukumar, Prabu, Ghosh, Sastry (bib0045) 2014; 113 Yamamoto, Igawa, Sugimoto, Yoshizawa, Yanagiguchi, Ikeda, Yamada, Hayashi (bib0070) 2014; 2014 Bentkover (bib0085) 2009; 25 Kolacna, Bakesova, Varga, Kostakova, Planka, Necas, Lukas, Amler, Pelouch (bib0095) 2007; 56 Zhang, Liu, Li, Shi, Miao, Wu (bib0025) 2007; 103 Ikoma, Kobayashi, Tanaka, Walsh, Mann (bib0080) 2003; 32 Sankar, Sekar, Mohan, Rani, Sundaraseelan, Sastry (bib0040) 2008; 42 Wollensak, Spoerl (bib0105) 2004; 30 Ding, Li, Sun, Su, Lin, Péault, Song, Yang, Dai, Hu (bib0010) 2014; 35 Terada, Izumi, Ohnuki, Saito, Kato, Yamamoto, Kawano, Nozawa-Inoue, Kashiwazaki, Ikoma, Tanaka, Maeda (bib0060) 2012; 100 Yin, Zhang, McClure, Huang, Wu, Fang, Mo, Bowlin, Al-Deyab, El-Newehy (bib0090) 2013; 105 Tian, Wu, Liu, Shen, Li (bib0110) 2015; 140 Wu, Bazer, Burghardt, Johnson, Kim, Knabe, Li, Li, McKnight, Satterfield, Spencer (bib0125) 2011; 40 Pabst (10.1016/j.colsurfb.2016.03.052_bib0015) 2016; 104 Chen (10.1016/j.colsurfb.2016.03.052_bib0055) 2011; 7 Minh Thuy le (10.1016/j.colsurfb.2016.03.052_bib0075) 2014; 149 Wu (10.1016/j.colsurfb.2016.03.052_bib0125) 2011; 40 Yamamoto (10.1016/j.colsurfb.2016.03.052_bib0070) 2014; 2014 Kolacna (10.1016/j.colsurfb.2016.03.052_bib0095) 2007; 56 Duan (10.1016/j.colsurfb.2016.03.052_bib0100) 2013; 8 Ikoma (10.1016/j.colsurfb.2016.03.052_bib0080) 2003; 32 Muthukumar (10.1016/j.colsurfb.2016.03.052_bib0045) 2014; 113 Tian (10.1016/j.colsurfb.2016.03.052_bib0115) 2008; 84 Duan (10.1016/j.colsurfb.2016.03.052_bib0035) 2009; 112 Muthukumar (10.1016/j.colsurfb.2016.03.052_bib0050) 2013; 102 Liu (10.1016/j.colsurfb.2016.03.052_bib0130) 2014; 15 Archana (10.1016/j.colsurfb.2016.03.052_bib0120) 2013; 57 Wollensak (10.1016/j.colsurfb.2016.03.052_bib0105) 2004; 30 Sankar (10.1016/j.colsurfb.2016.03.052_bib0040) 2008; 42 Terada (10.1016/j.colsurfb.2016.03.052_bib0060) 2012; 100 Bentkover (10.1016/j.colsurfb.2016.03.052_bib0085) 2009; 25 Ding (10.1016/j.colsurfb.2016.03.052_bib0010) 2014; 35 Matsumoto (10.1016/j.colsurfb.2016.03.052_bib0020) 2011; 32 Wang (10.1016/j.colsurfb.2016.03.052_bib0065) 2007; 72 Parcells (10.1016/j.colsurfb.2016.03.052_bib0005) 2014; 14 Tian (10.1016/j.colsurfb.2016.03.052_bib0110) 2015; 140 Gómez-Guillén (10.1016/j.colsurfb.2016.03.052_bib0030) 2011; 25 Yin (10.1016/j.colsurfb.2016.03.052_bib0090) 2013; 105 Zhang (10.1016/j.colsurfb.2016.03.052_bib0025) 2007; 103 |
References_xml | – volume: 56 start-page: S51 year: 2007 end-page: S60 ident: bib0095 publication-title: Physiol. Res. – volume: 2014 start-page: 630757 year: 2014 ident: bib0070 publication-title: BioMed Res. Int. – volume: 112 start-page: 702 year: 2009 end-page: 706 ident: bib0035 publication-title: Food Chem. – volume: 57 start-page: 193 year: 2013 end-page: 203 ident: bib0120 publication-title: Int. J. Biol. Macromol. – volume: 105 start-page: 1292 year: 2013 end-page: 1301 ident: bib0090 publication-title: J. Biomed. Mater. Res. A – volume: 104 start-page: 19 year: 2016 end-page: 26 ident: bib0015 publication-title: Odontology – volume: 7 start-page: 644 year: 2011 end-page: 652 ident: bib0055 publication-title: Acta Biomater. – volume: 149 start-page: 264 year: 2014 end-page: 270 ident: bib0075 publication-title: Food Chem. – volume: 14 start-page: e36 year: 2014 ident: bib0005 publication-title: Eplasty – volume: 8 start-page: 2077 year: 2013 end-page: 2084 ident: bib0100 publication-title: Int. J. Nanomed. – volume: 32 start-page: 29 year: 2011 end-page: 36 ident: bib0020 publication-title: Biomed. Res. – volume: 42 start-page: 6 year: 2008 end-page: 9 ident: bib0040 publication-title: Int. J. Biol. Macromol. – volume: 32 start-page: 199 year: 2003 end-page: 204 ident: bib0080 publication-title: Int. J. Biol. Macromol. – volume: 25 start-page: 1813 year: 2011 end-page: 1827 ident: bib0030 publication-title: Food Hydrocoll. – volume: 113 start-page: 207 year: 2014 end-page: 212 ident: bib0045 publication-title: Colloids Surf. B – volume: 30 start-page: 689 year: 2004 end-page: 695 ident: bib0105 publication-title: J. Cataract Refract. Surg. – volume: 103 start-page: 906 year: 2007 end-page: 912 ident: bib0025 publication-title: Food Chem. – volume: 15 start-page: 436 year: 2014 end-page: 443 ident: bib0130 publication-title: Biomacromolecules – volume: 140 start-page: 356 year: 2015 end-page: 363 ident: bib0110 publication-title: Spectrochim. Acta A – volume: 84 start-page: 291 year: 2008 end-page: 299 ident: bib0115 publication-title: J. Biomed. Mater. Res. A – volume: 72 start-page: E450 year: 2007 end-page: 455 ident: bib0065 publication-title: J. Food Sci. – volume: 40 start-page: 1053 year: 2011 end-page: 1063 ident: bib0125 publication-title: Amino Acids – volume: 102 start-page: 694 year: 2013 end-page: 699 ident: bib0050 publication-title: Colloids Surf. B – volume: 100 start-page: 1792 year: 2012 end-page: 1802 ident: bib0060 publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 25 start-page: 73 year: 2009 end-page: 85 ident: bib0085 publication-title: Facial Plast. Surg. – volume: 35 start-page: 4888 year: 2014 end-page: 4900 ident: bib0010 publication-title: Biomaterials – volume: 8 start-page: 2077 year: 2013 ident: 10.1016/j.colsurfb.2016.03.052_bib0100 publication-title: Int. J. Nanomed. – volume: 112 start-page: 702 year: 2009 ident: 10.1016/j.colsurfb.2016.03.052_bib0035 publication-title: Food Chem. doi: 10.1016/j.foodchem.2008.06.020 – volume: 105 start-page: 1292 year: 2013 ident: 10.1016/j.colsurfb.2016.03.052_bib0090 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34434 – volume: 25 start-page: 73 year: 2009 ident: 10.1016/j.colsurfb.2016.03.052_bib0085 publication-title: Facial Plast. Surg. doi: 10.1055/s-0029-1220646 – volume: 2014 start-page: 630757 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0070 publication-title: BioMed Res. Int. – volume: 15 start-page: 436 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0130 publication-title: Biomacromolecules doi: 10.1021/bm401780v – volume: 102 start-page: 694 year: 2013 ident: 10.1016/j.colsurfb.2016.03.052_bib0050 publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2012.09.041 – volume: 104 start-page: 19 year: 2016 ident: 10.1016/j.colsurfb.2016.03.052_bib0015 publication-title: Odontology doi: 10.1007/s10266-014-0186-x – volume: 113 start-page: 207 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0045 publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2013.09.019 – volume: 32 start-page: 29 year: 2011 ident: 10.1016/j.colsurfb.2016.03.052_bib0020 publication-title: Biomed. Res. doi: 10.2220/biomedres.32.29 – volume: 140 start-page: 356 year: 2015 ident: 10.1016/j.colsurfb.2016.03.052_bib0110 publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2015.01.003 – volume: 30 start-page: 689 year: 2004 ident: 10.1016/j.colsurfb.2016.03.052_bib0105 publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2003.11.032 – volume: 57 start-page: 193 year: 2013 ident: 10.1016/j.colsurfb.2016.03.052_bib0120 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.03.002 – volume: 103 start-page: 906 year: 2007 ident: 10.1016/j.colsurfb.2016.03.052_bib0025 publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.09.053 – volume: 56 start-page: S51 year: 2007 ident: 10.1016/j.colsurfb.2016.03.052_bib0095 publication-title: Physiol. Res. doi: 10.33549/physiolres.931302 – volume: 14 start-page: e36 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0005 publication-title: Eplasty – volume: 72 start-page: E450 year: 2007 ident: 10.1016/j.colsurfb.2016.03.052_bib0065 publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2007.00478.x – volume: 40 start-page: 1053 year: 2011 ident: 10.1016/j.colsurfb.2016.03.052_bib0125 publication-title: Amino Acids doi: 10.1007/s00726-010-0715-z – volume: 32 start-page: 199 year: 2003 ident: 10.1016/j.colsurfb.2016.03.052_bib0080 publication-title: Int. J. Biol. Macromol. doi: 10.1016/S0141-8130(03)00054-0 – volume: 25 start-page: 1813 year: 2011 ident: 10.1016/j.colsurfb.2016.03.052_bib0030 publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2011.02.007 – volume: 7 start-page: 644 year: 2011 ident: 10.1016/j.colsurfb.2016.03.052_bib0055 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.09.014 – volume: 100 start-page: 1792 year: 2012 ident: 10.1016/j.colsurfb.2016.03.052_bib0060 publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.32746 – volume: 149 start-page: 264 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0075 publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.10.094 – volume: 35 start-page: 4888 year: 2014 ident: 10.1016/j.colsurfb.2016.03.052_bib0010 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.046 – volume: 84 start-page: 291 year: 2008 ident: 10.1016/j.colsurfb.2016.03.052_bib0115 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.31304 – volume: 42 start-page: 6 year: 2008 ident: 10.1016/j.colsurfb.2016.03.052_bib0040 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2007.08.003 |
SSID | ssj0002417 |
Score | 2.540081 |
Snippet | [Display omitted]
•Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen... The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415 |
SubjectTerms | amino acids Animals Bandages bioactive properties biocompatible materials Biomaterials biomimetics CD4-CD8 Ratio CD4-Positive T-Lymphocytes - cytology CD4-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - cytology CD8-Positive T-Lymphocytes - immunology Cell Differentiation - drug effects Cell Line Cell Proliferation - drug effects collagen Collagen - isolation & purification Collagen - pharmacology Collagens colloids contact angle cost effectiveness Dressing Electrochemical Techniques Electrospinning Electrospun tilapia collagen nanofibers extracellular matrix Extracellular Matrix - chemistry gene expression Gene Expression Regulation - drug effects HaCaTs differentiation Humans immunoglobulin G immunoglobulin M Intermediate Filament Proteins - genetics Intermediate Filament Proteins - metabolism keratinocytes Keratinocytes - cytology Keratinocytes - drug effects lymphocytes medicine Mice Mice, Inbred BALB C Nanofibers Nanofibers - chemistry Nanofibers - therapeutic use Protein Precursors - genetics Protein Precursors - metabolism protein-glutamine gamma-glutamyltransferase Rat model Rats Rats, Sprague-Dawley risk Skin - drug effects Skin - injuries Skin - pathology Skin wound healing Sponges Tensile Strength thermal stability Tilapia Tilapia - metabolism tissue repair Transglutaminases - genetics Transglutaminases - metabolism Wound healing Wound Healing - drug effects |
Title | Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation |
URI | https://dx.doi.org/10.1016/j.colsurfb.2016.03.052 https://www.ncbi.nlm.nih.gov/pubmed/27037778 https://www.proquest.com/docview/1787086310 https://www.proquest.com/docview/1790937901 https://www.proquest.com/docview/1816003812 https://www.proquest.com/docview/2000293509 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5QAcEKQ8wqNaJMTNxPY-7D1GUasAoheo1NtqX0EpxYkau1Uv8NeZ2bVLOTQ9cFxrxok9n2e-tedByDsBMdPagmd1UD7j0svMCGczz7xhzgdZxk5MX47k_Jh_OhEnO2Q21MJgWmXv-5NPj966PzLp7-ZkvVxOvuaqrKpKCmAUOGkSi_g4rxDlH379TfOACBVLpkE4Q-kbVcKncO6zTXe-sJjiJWOzU1HeFqBuI6AxEB0-Jo96Bkmn6U8-ITuhGZG9aQO7559X9D2NOZ3xZfmI3J8N89xG5OGN1oN75PdBmn-zWXcNbZdY02ZoBAUgijamAdBZoIbUOAeRCXHSfKeXOISJIrnE1QWowJa-c7j4kWRW7grIK13jMKBFSPCiBpSGSSxtwsJTcnx48G02z_phDJkTVd5mobDKLHgIRe5sLY1jFatU7m3NhTCl8t4yx8FbshBKLzxjzFTYltwamwtbsGdkt1k14QWhwUrvqjzATsZyb2TtvMu997BVk8obPiZisIB2fadyHJhxpoeUtFM9WE6j5XTONFhuTCbXeuvUq-NODTUYWP-DOg0B5U7dtwMiNFgSv7OYJqy6jS7QCdYSiPM2GZUrvIHFFpm6kPFL7pbfwkorYGxA-8bkeYLl9bWX4M3hCalf_sdVviIPcJUSlF-T3fa8C2-AhrV2Pz5n--Te9OPn-dEfeGE4Ag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VcigcEKQ8wnOREDcT2-tde49V1CpA2wut1NtqX0EpxYmauFUv8NeZWdulHJoeONqZcWLP7My38cx8AB8E5kxrsyKpgvJJIb1MjHA28dwb7nyQeZzEdHAoJ8fFlxNxsgHjvheGyiq72N_G9BituzOj7mmOFrPZ6Fuq8rIspUBEQUyT6h7cL3D5Eo3Bp19_6zwwRcWeaZROSPxGm_ApXvxs2ZxPLdV4yTjtVOS3ZajbEGjMRHuP4VEHIdlO-yufwEaoB7C9U-P2-ecV-8hiUWf8t3wAW-Oe0G0AD2_MHtyG37stAc5y0dRsNaOmNsOiV6BLsdrU6HUWsSEzzmFqIkepv7NLYmFihC7p6AJVcE_fODr40crM3RWiV7YgNqBpaP2LGVTqqVhWrTM8heO93aPxJOnYGBInynSVhMwqMy1CyFJnK2kcL3mpUm-rQgiTK-8tdwWGSx5C7oXnnJuS5pJbY1NhM_4MNut5HV4AC1Z6V6YBtzK28EZWzrvUe497Nam8KYYgegto140qJ8aMM93XpJ3q3nKaLKdTrtFyQxhd6y3aYR13aqjewPoft9OYUe7Ufd97hEZL0osWU4d5s9QZRcFKInJeJ6NSRQ8wWyNTZTK-yl3zXdRqhZANcd8QnrdueX3vOYZzXCLVy_-4y3ewNTk62Nf7nw-_voIH9ElbrfwaNlfnTXiDmGxl38Y19wdAQzmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+tilapia+collagen+nanofibers+accelerating+wound+healing+via+inducing+keratinocytes+proliferation+and+differentiation&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Zhou%2C+Tian&rft.au=Wang%2C+Nanping&rft.au=Xue%2C+Yang&rft.au=Ding%2C+Tingting&rft.date=2016-07-01&rft.eissn=1873-4367&rft.volume=143&rft.spage=415&rft_id=info:doi/10.1016%2Fj.colsurfb.2016.03.052&rft_id=info%3Apmid%2F27037778&rft.externalDocID=27037778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon |