Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation

[Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces, B, Biointerfaces Vol. 143; pp. 415 - 422
Main Authors Zhou, Tian, Wang, Nanping, Xue, Yang, Ding, Tingting, Liu, Xin, Mo, Xiumei, Sun, Jiao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were promoted by electrospun tilapia collagen nanofibers.•The electrospun tilapia collagen nanofibers could accelerate skin wound healing rapidly and effectively in the rat model. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
AbstractList The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
[Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen nanofibers with suitable tensile strength and thermal stability were developed.•The adhesion, proliferation and differentiation of HaCaTs were promoted by electrospun tilapia collagen nanofibers.•The electrospun tilapia collagen nanofibers could accelerate skin wound healing rapidly and effectively in the rat model. The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two alpha -peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72 plus or minus 0.44MPa and 26.71 plus or minus 4.88 degree , respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4⁺/CD8⁺ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.
Author Zhou, Tian
Mo, Xiumei
Wang, Nanping
Xue, Yang
Ding, Tingting
Liu, Xin
Sun, Jiao
Author_xml – sequence: 1
  givenname: Tian
  surname: Zhou
  fullname: Zhou, Tian
  organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
– sequence: 2
  givenname: Nanping
  surname: Wang
  fullname: Wang, Nanping
  organization: Shanghai Fisheries Research Institute, Shanghai 200433, China
– sequence: 3
  givenname: Yang
  surname: Xue
  fullname: Xue, Yang
  organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
– sequence: 4
  givenname: Tingting
  surname: Ding
  fullname: Ding, Tingting
  organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
– sequence: 5
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
– sequence: 6
  givenname: Xiumei
  surname: Mo
  fullname: Mo, Xiumei
  email: xmm@dhu.edu.cn
  organization: College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
– sequence: 7
  givenname: Jiao
  surname: Sun
  fullname: Sun, Jiao
  email: jiaosun59@126.com
  organization: Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27037778$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr1DlyGXD2E7iROIAqgpUqsQFzpb_TIoXr73YSaue-Oo4u91LL8vJetbvjccz74KchRiQkCsKNQXafdjUJvo8p1HXrOgaeA0te0VWtBd83fBOnJEVDEyshejac3KR8wYAWEPFG3LOBHAhRL8if288minFvJtDNTmvdk5VpbRX9xiqoEIcncaUK2UMekxqcuG-eoxzsNUvVH5RD8Xigp3NIn4fmGieJszVLkXvxv1VDJUqJuvGojFMbn_3lrwelc_47vm8JD-_3Py4_ra--_719vrz3dq0AqY1Uj2osUGkYHTfKcMFFwNY3Tdtq9hgreamUdZyRGZbyzlXAgQbtNLQasovyftD3dLRnxnzJLculx95FTDOWbJlOANvYTiJ0p52ALyn7DRaehyWRul_oL2AvuMUCnr1jM56i1buktuq9CSPWyvAxwNgyuJywlEaN-3HOSXlvKQgl5DIjTyGRC4hkcBlCUmxdy_sxxdOGj8djFg29eAwyWwcBoPWpZIiaaM7VeIfmJ_dyQ
CitedBy_id crossref_primary_10_1080_00405000_2021_1957277
crossref_primary_10_3389_fbioe_2021_730938
crossref_primary_10_1002_jbm_a_37154
crossref_primary_10_2147_IJN_S485588
crossref_primary_10_1088_1757_899X_932_1_012021
crossref_primary_10_3390_polym13142319
crossref_primary_10_1186_s40779_017_0143_4
crossref_primary_10_1002_cbdv_202400615
crossref_primary_10_1126_sciadv_abn1646
crossref_primary_10_1080_10408398_2020_1839855
crossref_primary_10_1016_j_msec_2021_112202
crossref_primary_10_1093_jscr_rjz181
crossref_primary_10_1002_adem_202301297
crossref_primary_10_1016_j_carbpol_2022_119666
crossref_primary_10_1080_17425247_2021_1823966
crossref_primary_10_1038_s41598_018_34684_1
crossref_primary_10_1080_00914037_2024_2408484
crossref_primary_10_1088_1748_605X_aa7b55
crossref_primary_10_1021_acs_biomac_1c00013
crossref_primary_10_1016_j_msec_2018_04_021
crossref_primary_10_1016_j_mtchem_2024_102295
crossref_primary_10_3390_molecules28083394
crossref_primary_10_3390_md18100511
crossref_primary_10_12688_materialsopenres_17568_1
crossref_primary_10_3139_113_110616
crossref_primary_10_3390_fishes9110462
crossref_primary_10_12688_materialsopenres_17568_2
crossref_primary_10_1186_s40580_019_0209_y
crossref_primary_10_1016_j_bioadv_2024_214023
crossref_primary_10_1016_j_ijbiomac_2024_137806
crossref_primary_10_1109_TNB_2018_2884279
crossref_primary_10_1016_j_bioactmat_2022_07_006
crossref_primary_10_3390_md22020060
crossref_primary_10_1007_s11595_020_2367_5
crossref_primary_10_3390_ma14061322
crossref_primary_10_1155_2017_6341710
crossref_primary_10_3390_md17010033
crossref_primary_10_1016_j_sciaf_2024_e02245
crossref_primary_10_1002_app_47738
crossref_primary_10_1016_j_actbio_2022_01_009
crossref_primary_10_1016_j_matpr_2022_03_174
crossref_primary_10_1007_s42765_022_00137_8
crossref_primary_10_3390_polym13244368
crossref_primary_10_1016_j_colsurfb_2017_05_001
crossref_primary_10_1016_j_matdes_2020_108947
crossref_primary_10_1016_j_archoralbio_2023_105793
crossref_primary_10_1016_j_mehy_2022_110889
crossref_primary_10_1016_j_msec_2020_110963
crossref_primary_10_1016_j_ijbiomac_2018_01_179
crossref_primary_10_3390_md20010061
crossref_primary_10_1002_jbm_b_35059
crossref_primary_10_1007_s40883_024_00332_6
crossref_primary_10_1038_s43246_024_00488_2
crossref_primary_10_1016_j_ijbiomac_2018_01_217
crossref_primary_10_3389_fmars_2022_863310
crossref_primary_10_1007_s12257_024_00032_6
crossref_primary_10_1007_s42765_022_00170_7
crossref_primary_10_1038_cddis_2016_152
crossref_primary_10_1016_j_ijbiomac_2024_133032
crossref_primary_10_1016_j_susmat_2025_e01355
crossref_primary_10_2174_1381612829666230524153002
crossref_primary_10_1016_j_jid_2018_03_1521
crossref_primary_10_3390_ma16041438
crossref_primary_10_1016_j_msec_2018_05_045
crossref_primary_10_1080_00914037_2024_2429576
crossref_primary_10_1002_mabi_201600300
crossref_primary_10_3390_polym16182668
crossref_primary_10_2174_2468187313666230817151543
crossref_primary_10_1007_s10965_021_02415_2
crossref_primary_10_1016_j_ijbiomac_2021_01_051
crossref_primary_10_1016_j_jconrel_2022_07_005
crossref_primary_10_1080_10408398_2020_1751585
crossref_primary_10_3390_bioengineering10020204
crossref_primary_10_1039_C9CS00653B
crossref_primary_10_1016_j_carbpol_2017_03_053
crossref_primary_10_1016_j_actbio_2020_02_022
crossref_primary_10_4103_ijb_ijb_31_21
crossref_primary_10_1016_j_jbiosc_2019_02_004
crossref_primary_10_1080_17434440_2022_2075730
crossref_primary_10_52711_0974_360X_2023_00415
crossref_primary_10_1016_j_cvex_2019_06_002
crossref_primary_10_1016_j_psep_2024_08_035
crossref_primary_10_5021_ad_2022_34_1_46
crossref_primary_10_1002_adfm_201909045
crossref_primary_10_1002_jbm_a_36656
crossref_primary_10_1016_j_colsurfb_2021_112238
crossref_primary_10_61873_KJDF4893
crossref_primary_10_1016_j_omtn_2020_11_017
crossref_primary_10_1021_acsami_9b13271
crossref_primary_10_1038_s41538_022_00168_w
crossref_primary_10_1177_0391398819877191
crossref_primary_10_1002_jbm_b_35399
crossref_primary_10_1016_j_jddst_2023_105156
crossref_primary_10_3390_membranes11120908
crossref_primary_10_4012_dmj_2020_446
crossref_primary_10_1016_j_biopha_2016_06_016
crossref_primary_10_1177_0885328217739562
crossref_primary_10_1016_j_apmt_2024_102332
crossref_primary_10_1016_j_ijbiomac_2020_08_059
crossref_primary_10_1016_j_mtcomm_2024_108706
crossref_primary_10_1016_j_carbpol_2021_117675
crossref_primary_10_1002_adfm_201804943
crossref_primary_10_1007_s11468_023_01863_4
crossref_primary_10_1016_j_biomaterials_2019_119633
crossref_primary_10_1007_s42765_020_00034_y
crossref_primary_10_1016_j_msec_2020_110994
crossref_primary_10_1080_10408398_2022_2067829
crossref_primary_10_1016_j_ijbiomac_2023_125772
crossref_primary_10_1016_j_eurpolymj_2018_10_013
crossref_primary_10_1016_j_msec_2018_06_021
crossref_primary_10_1016_j_jmig_2019_09_779
crossref_primary_10_1186_s12917_020_02566_2
crossref_primary_10_1039_D2BM00646D
crossref_primary_10_1155_2021_1907914
crossref_primary_10_1016_j_jconrel_2021_07_017
crossref_primary_10_1021_acs_biomac_3c01137
crossref_primary_10_1039_C8BM00492G
crossref_primary_10_1080_10498850_2022_2048332
crossref_primary_10_1111_jocd_15912
crossref_primary_10_1007_s42242_024_00311_4
crossref_primary_10_1016_j_carbpol_2019_115786
crossref_primary_10_3390_md15040102
crossref_primary_10_1016_j_ijbiomac_2019_12_275
crossref_primary_10_1016_j_msec_2021_112503
crossref_primary_10_1021_acsabm_0c01538
crossref_primary_10_1080_00914037_2024_2402364
crossref_primary_10_1016_j_nanoso_2018_03_013
crossref_primary_10_1093_jbcr_irz205
crossref_primary_10_1002_jccs_202000153
crossref_primary_10_1089_ten_tea_2016_0504
crossref_primary_10_4103_denthyp_denthyp_13_24
crossref_primary_10_1016_j_msec_2021_112340
crossref_primary_10_1016_j_pmatsci_2024_101350
crossref_primary_10_1016_j_cis_2022_102827
crossref_primary_10_3390_ma10080929
crossref_primary_10_1016_j_ijpharm_2021_121368
crossref_primary_10_1016_j_copbio_2021_10_011
crossref_primary_10_1016_j_msec_2017_03_118
crossref_primary_10_1016_j_jddst_2023_105091
crossref_primary_10_1177_0885328218820180
crossref_primary_10_1021_acsabm_1c00685
crossref_primary_10_1007_s12221_022_4275_0
crossref_primary_10_1002_term_2928
crossref_primary_10_1007_s11033_024_09750_9
crossref_primary_10_61096_ijamscr_v12_iss3_2024_311_319
crossref_primary_10_1007_s40496_020_00286_y
crossref_primary_10_3390_polym12102230
crossref_primary_10_1002_app_53910
crossref_primary_10_1155_2020_6265701
Cites_doi 10.1016/j.foodchem.2008.06.020
10.1002/jbm.a.34434
10.1055/s-0029-1220646
10.1021/bm401780v
10.1016/j.colsurfb.2012.09.041
10.1007/s10266-014-0186-x
10.1016/j.colsurfb.2013.09.019
10.2220/biomedres.32.29
10.1016/j.saa.2015.01.003
10.1016/j.jcrs.2003.11.032
10.1016/j.ijbiomac.2013.03.002
10.1016/j.foodchem.2006.09.053
10.33549/physiolres.931302
10.1111/j.1750-3841.2007.00478.x
10.1007/s00726-010-0715-z
10.1016/S0141-8130(03)00054-0
10.1016/j.foodhyd.2011.02.007
10.1016/j.actbio.2010.09.014
10.1002/jbm.b.32746
10.1016/j.foodchem.2013.10.094
10.1016/j.biomaterials.2014.02.046
10.1002/jbm.a.31304
10.1016/j.ijbiomac.2007.08.003
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7U5
8BQ
JG9
L7M
7S9
L.6
DOI 10.1016/j.colsurfb.2016.03.052
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Engineering Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
Medicine
EISSN 1873-4367
EndPage 422
ExternalDocumentID 27037778
10_1016_j_colsurfb_2016_03_052
S0927776516302089
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABMAC
ABNEU
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SSG
SSK
SSM
SSQ
SSU
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
SMS
SSH
VH1
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7QO
8FD
FR3
P64
7SR
7U5
8BQ
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c570t-e1b9af4ee10cb86ac373790db8455a29ddb3c4add3ee2d5d333a70729bab05b13
IEDL.DBID .~1
ISSN 0927-7765
1873-4367
IngestDate Thu Jul 10 23:51:11 EDT 2025
Tue Aug 05 09:31:47 EDT 2025
Thu Jul 10 17:23:14 EDT 2025
Sun Aug 24 03:59:49 EDT 2025
Wed Feb 19 01:56:22 EST 2025
Tue Jul 01 01:05:36 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Fri Feb 23 02:31:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HaCaTs differentiation
Rat model
Skin wound healing
Electrospun tilapia collagen nanofibers
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-e1b9af4ee10cb86ac373790db8455a29ddb3c4add3ee2d5d333a70729bab05b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27037778
PQID 1787086310
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000293509
proquest_miscellaneous_1816003812
proquest_miscellaneous_1790937901
proquest_miscellaneous_1787086310
pubmed_primary_27037778
crossref_citationtrail_10_1016_j_colsurfb_2016_03_052
crossref_primary_10_1016_j_colsurfb_2016_03_052
elsevier_sciencedirect_doi_10_1016_j_colsurfb_2016_03_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Colloids and surfaces, B, Biointerfaces
PublicationTitleAlternate Colloids Surf B Biointerfaces
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gómez-Guillén, Giménez, López-Caballero, Montero (bib0030) 2011; 25
Liu, Sun (bib0130) 2014; 15
Matsumoto, Ikeda, Yamaya, Yamashita, Saito, Hoshino, Koga, Enari, Suto, Yotsuyanagi (bib0020) 2011; 32
Wang, An, Xin, Zhao, Hu (bib0065) 2007; 72
Chen, Hirota, Okuda, Takeguchi, Kobayashi, Hanagata, Ikoma (bib0055) 2011; 7
Tian, Hosseinkhani, Hosseinkhani, Khademhosseini, Yokoyama, Estrada, Kobayashi (bib0115) 2008; 84
Archana, Dutta, Dutta (bib0120) 2013; 57
Minh Thuy le, Okazaki, Osako (bib0075) 2014; 149
Duan, Feng, Guo, Wang, Zhao, Zhou, Liu, Cao, Zhang (bib0100) 2013; 8
Pabst, Lehmann, Walter, Krüger, Stratul, Kasaj (bib0015) 2016; 104
Muthukumar, Senthil, Sastry (bib0050) 2013; 102
Parcells, Karcich, Granick, Marano (bib0005) 2014; 14
Duan, Zhang, Du, Yao, Konno (bib0035) 2009; 112
Muthukumar, Prabu, Ghosh, Sastry (bib0045) 2014; 113
Yamamoto, Igawa, Sugimoto, Yoshizawa, Yanagiguchi, Ikeda, Yamada, Hayashi (bib0070) 2014; 2014
Bentkover (bib0085) 2009; 25
Kolacna, Bakesova, Varga, Kostakova, Planka, Necas, Lukas, Amler, Pelouch (bib0095) 2007; 56
Zhang, Liu, Li, Shi, Miao, Wu (bib0025) 2007; 103
Ikoma, Kobayashi, Tanaka, Walsh, Mann (bib0080) 2003; 32
Sankar, Sekar, Mohan, Rani, Sundaraseelan, Sastry (bib0040) 2008; 42
Wollensak, Spoerl (bib0105) 2004; 30
Ding, Li, Sun, Su, Lin, Péault, Song, Yang, Dai, Hu (bib0010) 2014; 35
Terada, Izumi, Ohnuki, Saito, Kato, Yamamoto, Kawano, Nozawa-Inoue, Kashiwazaki, Ikoma, Tanaka, Maeda (bib0060) 2012; 100
Yin, Zhang, McClure, Huang, Wu, Fang, Mo, Bowlin, Al-Deyab, El-Newehy (bib0090) 2013; 105
Tian, Wu, Liu, Shen, Li (bib0110) 2015; 140
Wu, Bazer, Burghardt, Johnson, Kim, Knabe, Li, Li, McKnight, Satterfield, Spencer (bib0125) 2011; 40
Pabst (10.1016/j.colsurfb.2016.03.052_bib0015) 2016; 104
Chen (10.1016/j.colsurfb.2016.03.052_bib0055) 2011; 7
Minh Thuy le (10.1016/j.colsurfb.2016.03.052_bib0075) 2014; 149
Wu (10.1016/j.colsurfb.2016.03.052_bib0125) 2011; 40
Yamamoto (10.1016/j.colsurfb.2016.03.052_bib0070) 2014; 2014
Kolacna (10.1016/j.colsurfb.2016.03.052_bib0095) 2007; 56
Duan (10.1016/j.colsurfb.2016.03.052_bib0100) 2013; 8
Ikoma (10.1016/j.colsurfb.2016.03.052_bib0080) 2003; 32
Muthukumar (10.1016/j.colsurfb.2016.03.052_bib0045) 2014; 113
Tian (10.1016/j.colsurfb.2016.03.052_bib0115) 2008; 84
Duan (10.1016/j.colsurfb.2016.03.052_bib0035) 2009; 112
Muthukumar (10.1016/j.colsurfb.2016.03.052_bib0050) 2013; 102
Liu (10.1016/j.colsurfb.2016.03.052_bib0130) 2014; 15
Archana (10.1016/j.colsurfb.2016.03.052_bib0120) 2013; 57
Wollensak (10.1016/j.colsurfb.2016.03.052_bib0105) 2004; 30
Sankar (10.1016/j.colsurfb.2016.03.052_bib0040) 2008; 42
Terada (10.1016/j.colsurfb.2016.03.052_bib0060) 2012; 100
Bentkover (10.1016/j.colsurfb.2016.03.052_bib0085) 2009; 25
Ding (10.1016/j.colsurfb.2016.03.052_bib0010) 2014; 35
Matsumoto (10.1016/j.colsurfb.2016.03.052_bib0020) 2011; 32
Wang (10.1016/j.colsurfb.2016.03.052_bib0065) 2007; 72
Parcells (10.1016/j.colsurfb.2016.03.052_bib0005) 2014; 14
Tian (10.1016/j.colsurfb.2016.03.052_bib0110) 2015; 140
Gómez-Guillén (10.1016/j.colsurfb.2016.03.052_bib0030) 2011; 25
Yin (10.1016/j.colsurfb.2016.03.052_bib0090) 2013; 105
Zhang (10.1016/j.colsurfb.2016.03.052_bib0025) 2007; 103
References_xml – volume: 56
  start-page: S51
  year: 2007
  end-page: S60
  ident: bib0095
  publication-title: Physiol. Res.
– volume: 2014
  start-page: 630757
  year: 2014
  ident: bib0070
  publication-title: BioMed Res. Int.
– volume: 112
  start-page: 702
  year: 2009
  end-page: 706
  ident: bib0035
  publication-title: Food Chem.
– volume: 57
  start-page: 193
  year: 2013
  end-page: 203
  ident: bib0120
  publication-title: Int. J. Biol. Macromol.
– volume: 105
  start-page: 1292
  year: 2013
  end-page: 1301
  ident: bib0090
  publication-title: J. Biomed. Mater. Res. A
– volume: 104
  start-page: 19
  year: 2016
  end-page: 26
  ident: bib0015
  publication-title: Odontology
– volume: 7
  start-page: 644
  year: 2011
  end-page: 652
  ident: bib0055
  publication-title: Acta Biomater.
– volume: 149
  start-page: 264
  year: 2014
  end-page: 270
  ident: bib0075
  publication-title: Food Chem.
– volume: 14
  start-page: e36
  year: 2014
  ident: bib0005
  publication-title: Eplasty
– volume: 8
  start-page: 2077
  year: 2013
  end-page: 2084
  ident: bib0100
  publication-title: Int. J. Nanomed.
– volume: 32
  start-page: 29
  year: 2011
  end-page: 36
  ident: bib0020
  publication-title: Biomed. Res.
– volume: 42
  start-page: 6
  year: 2008
  end-page: 9
  ident: bib0040
  publication-title: Int. J. Biol. Macromol.
– volume: 32
  start-page: 199
  year: 2003
  end-page: 204
  ident: bib0080
  publication-title: Int. J. Biol. Macromol.
– volume: 25
  start-page: 1813
  year: 2011
  end-page: 1827
  ident: bib0030
  publication-title: Food Hydrocoll.
– volume: 113
  start-page: 207
  year: 2014
  end-page: 212
  ident: bib0045
  publication-title: Colloids Surf. B
– volume: 30
  start-page: 689
  year: 2004
  end-page: 695
  ident: bib0105
  publication-title: J. Cataract Refract. Surg.
– volume: 103
  start-page: 906
  year: 2007
  end-page: 912
  ident: bib0025
  publication-title: Food Chem.
– volume: 15
  start-page: 436
  year: 2014
  end-page: 443
  ident: bib0130
  publication-title: Biomacromolecules
– volume: 140
  start-page: 356
  year: 2015
  end-page: 363
  ident: bib0110
  publication-title: Spectrochim. Acta A
– volume: 84
  start-page: 291
  year: 2008
  end-page: 299
  ident: bib0115
  publication-title: J. Biomed. Mater. Res. A
– volume: 72
  start-page: E450
  year: 2007
  end-page: 455
  ident: bib0065
  publication-title: J. Food Sci.
– volume: 40
  start-page: 1053
  year: 2011
  end-page: 1063
  ident: bib0125
  publication-title: Amino Acids
– volume: 102
  start-page: 694
  year: 2013
  end-page: 699
  ident: bib0050
  publication-title: Colloids Surf. B
– volume: 100
  start-page: 1792
  year: 2012
  end-page: 1802
  ident: bib0060
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 25
  start-page: 73
  year: 2009
  end-page: 85
  ident: bib0085
  publication-title: Facial Plast. Surg.
– volume: 35
  start-page: 4888
  year: 2014
  end-page: 4900
  ident: bib0010
  publication-title: Biomaterials
– volume: 8
  start-page: 2077
  year: 2013
  ident: 10.1016/j.colsurfb.2016.03.052_bib0100
  publication-title: Int. J. Nanomed.
– volume: 112
  start-page: 702
  year: 2009
  ident: 10.1016/j.colsurfb.2016.03.052_bib0035
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2008.06.020
– volume: 105
  start-page: 1292
  year: 2013
  ident: 10.1016/j.colsurfb.2016.03.052_bib0090
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34434
– volume: 25
  start-page: 73
  year: 2009
  ident: 10.1016/j.colsurfb.2016.03.052_bib0085
  publication-title: Facial Plast. Surg.
  doi: 10.1055/s-0029-1220646
– volume: 2014
  start-page: 630757
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0070
  publication-title: BioMed Res. Int.
– volume: 15
  start-page: 436
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0130
  publication-title: Biomacromolecules
  doi: 10.1021/bm401780v
– volume: 102
  start-page: 694
  year: 2013
  ident: 10.1016/j.colsurfb.2016.03.052_bib0050
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2012.09.041
– volume: 104
  start-page: 19
  year: 2016
  ident: 10.1016/j.colsurfb.2016.03.052_bib0015
  publication-title: Odontology
  doi: 10.1007/s10266-014-0186-x
– volume: 113
  start-page: 207
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0045
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2013.09.019
– volume: 32
  start-page: 29
  year: 2011
  ident: 10.1016/j.colsurfb.2016.03.052_bib0020
  publication-title: Biomed. Res.
  doi: 10.2220/biomedres.32.29
– volume: 140
  start-page: 356
  year: 2015
  ident: 10.1016/j.colsurfb.2016.03.052_bib0110
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2015.01.003
– volume: 30
  start-page: 689
  year: 2004
  ident: 10.1016/j.colsurfb.2016.03.052_bib0105
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2003.11.032
– volume: 57
  start-page: 193
  year: 2013
  ident: 10.1016/j.colsurfb.2016.03.052_bib0120
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.03.002
– volume: 103
  start-page: 906
  year: 2007
  ident: 10.1016/j.colsurfb.2016.03.052_bib0025
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.09.053
– volume: 56
  start-page: S51
  year: 2007
  ident: 10.1016/j.colsurfb.2016.03.052_bib0095
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.931302
– volume: 14
  start-page: e36
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0005
  publication-title: Eplasty
– volume: 72
  start-page: E450
  year: 2007
  ident: 10.1016/j.colsurfb.2016.03.052_bib0065
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2007.00478.x
– volume: 40
  start-page: 1053
  year: 2011
  ident: 10.1016/j.colsurfb.2016.03.052_bib0125
  publication-title: Amino Acids
  doi: 10.1007/s00726-010-0715-z
– volume: 32
  start-page: 199
  year: 2003
  ident: 10.1016/j.colsurfb.2016.03.052_bib0080
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(03)00054-0
– volume: 25
  start-page: 1813
  year: 2011
  ident: 10.1016/j.colsurfb.2016.03.052_bib0030
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2011.02.007
– volume: 7
  start-page: 644
  year: 2011
  ident: 10.1016/j.colsurfb.2016.03.052_bib0055
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.09.014
– volume: 100
  start-page: 1792
  year: 2012
  ident: 10.1016/j.colsurfb.2016.03.052_bib0060
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.32746
– volume: 149
  start-page: 264
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0075
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.10.094
– volume: 35
  start-page: 4888
  year: 2014
  ident: 10.1016/j.colsurfb.2016.03.052_bib0010
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.046
– volume: 84
  start-page: 291
  year: 2008
  ident: 10.1016/j.colsurfb.2016.03.052_bib0115
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.31304
– volume: 42
  start-page: 6
  year: 2008
  ident: 10.1016/j.colsurfb.2016.03.052_bib0040
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2007.08.003
SSID ssj0002417
Score 2.540081
Snippet [Display omitted] •Collagen sponge from tilapia skin was extracted and proved to not induce obvious immune response.•Biomimetic electrospun tilapia collagen...
The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms amino acids
Animals
Bandages
bioactive properties
biocompatible materials
Biomaterials
biomimetics
CD4-CD8 Ratio
CD4-Positive T-Lymphocytes - cytology
CD4-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - cytology
CD8-Positive T-Lymphocytes - immunology
Cell Differentiation - drug effects
Cell Line
Cell Proliferation - drug effects
collagen
Collagen - isolation & purification
Collagen - pharmacology
Collagens
colloids
contact angle
cost effectiveness
Dressing
Electrochemical Techniques
Electrospinning
Electrospun tilapia collagen nanofibers
extracellular matrix
Extracellular Matrix - chemistry
gene expression
Gene Expression Regulation - drug effects
HaCaTs differentiation
Humans
immunoglobulin G
immunoglobulin M
Intermediate Filament Proteins - genetics
Intermediate Filament Proteins - metabolism
keratinocytes
Keratinocytes - cytology
Keratinocytes - drug effects
lymphocytes
medicine
Mice
Mice, Inbred BALB C
Nanofibers
Nanofibers - chemistry
Nanofibers - therapeutic use
Protein Precursors - genetics
Protein Precursors - metabolism
protein-glutamine gamma-glutamyltransferase
Rat model
Rats
Rats, Sprague-Dawley
risk
Skin - drug effects
Skin - injuries
Skin - pathology
Skin wound healing
Sponges
Tensile Strength
thermal stability
Tilapia
Tilapia - metabolism
tissue repair
Transglutaminases - genetics
Transglutaminases - metabolism
Wound healing
Wound Healing - drug effects
Title Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation
URI https://dx.doi.org/10.1016/j.colsurfb.2016.03.052
https://www.ncbi.nlm.nih.gov/pubmed/27037778
https://www.proquest.com/docview/1787086310
https://www.proquest.com/docview/1790937901
https://www.proquest.com/docview/1816003812
https://www.proquest.com/docview/2000293509
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5V5QAcEKQ8wqNaJMTNxPY-7D1GUasAoheo1NtqX0EpxYkau1Uv8NeZ2bVLOTQ9cFxrxok9n2e-tedByDsBMdPagmd1UD7j0svMCGczz7xhzgdZxk5MX47k_Jh_OhEnO2Q21MJgWmXv-5NPj966PzLp7-ZkvVxOvuaqrKpKCmAUOGkSi_g4rxDlH379TfOACBVLpkE4Q-kbVcKncO6zTXe-sJjiJWOzU1HeFqBuI6AxEB0-Jo96Bkmn6U8-ITuhGZG9aQO7559X9D2NOZ3xZfmI3J8N89xG5OGN1oN75PdBmn-zWXcNbZdY02ZoBAUgijamAdBZoIbUOAeRCXHSfKeXOISJIrnE1QWowJa-c7j4kWRW7grIK13jMKBFSPCiBpSGSSxtwsJTcnx48G02z_phDJkTVd5mobDKLHgIRe5sLY1jFatU7m3NhTCl8t4yx8FbshBKLzxjzFTYltwamwtbsGdkt1k14QWhwUrvqjzATsZyb2TtvMu997BVk8obPiZisIB2fadyHJhxpoeUtFM9WE6j5XTONFhuTCbXeuvUq-NODTUYWP-DOg0B5U7dtwMiNFgSv7OYJqy6jS7QCdYSiPM2GZUrvIHFFpm6kPFL7pbfwkorYGxA-8bkeYLl9bWX4M3hCalf_sdVviIPcJUSlF-T3fa8C2-AhrV2Pz5n--Te9OPn-dEfeGE4Ag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VcigcEKQ8wnOREDcT2-tde49V1CpA2wut1NtqX0EpxYmauFUv8NeZWdulHJoeONqZcWLP7My38cx8AB8E5kxrsyKpgvJJIb1MjHA28dwb7nyQeZzEdHAoJ8fFlxNxsgHjvheGyiq72N_G9BituzOj7mmOFrPZ6Fuq8rIspUBEQUyT6h7cL3D5Eo3Bp19_6zwwRcWeaZROSPxGm_ApXvxs2ZxPLdV4yTjtVOS3ZajbEGjMRHuP4VEHIdlO-yufwEaoB7C9U-P2-ecV-8hiUWf8t3wAW-Oe0G0AD2_MHtyG37stAc5y0dRsNaOmNsOiV6BLsdrU6HUWsSEzzmFqIkepv7NLYmFihC7p6AJVcE_fODr40crM3RWiV7YgNqBpaP2LGVTqqVhWrTM8heO93aPxJOnYGBInynSVhMwqMy1CyFJnK2kcL3mpUm-rQgiTK-8tdwWGSx5C7oXnnJuS5pJbY1NhM_4MNut5HV4AC1Z6V6YBtzK28EZWzrvUe497Nam8KYYgegto140qJ8aMM93XpJ3q3nKaLKdTrtFyQxhd6y3aYR13aqjewPoft9OYUe7Ufd97hEZL0osWU4d5s9QZRcFKInJeJ6NSRQ8wWyNTZTK-yl3zXdRqhZANcd8QnrdueX3vOYZzXCLVy_-4y3ewNTk62Nf7nw-_voIH9ElbrfwaNlfnTXiDmGxl38Y19wdAQzmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+tilapia+collagen+nanofibers+accelerating+wound+healing+via+inducing+keratinocytes+proliferation+and+differentiation&rft.jtitle=Colloids+and+surfaces%2C+B%2C+Biointerfaces&rft.au=Zhou%2C+Tian&rft.au=Wang%2C+Nanping&rft.au=Xue%2C+Yang&rft.au=Ding%2C+Tingting&rft.date=2016-07-01&rft.eissn=1873-4367&rft.volume=143&rft.spage=415&rft_id=info:doi/10.1016%2Fj.colsurfb.2016.03.052&rft_id=info%3Apmid%2F27037778&rft.externalDocID=27037778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7765&client=summon