The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice

Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rh...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 16; no. 9; p. 1384
Main Authors Schaunaman, Niccolette, Nichols, Taylor, Cervantes, Diana, Hartsoe, Paige, Ferrington, Deborah A., Chu, Hong Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.08.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1999-4915
1999-4915
DOI:10.3390/v16091384