Multiple complex families of endogenous retroviruses are highly conserved in the genus Gallus

We have analyzed the genome of the domestic chicken for the presence of genetic sequences related to the envelope protein-encoding genes of avian sarcoma/leukosis retroviruses to determine the organization, structure, potential functionality, and distribution of such sequences. We have previously id...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 66; no. 8; pp. 4919 - 4929
Main Authors Boyce-Jacino, M.T. (University of Minnesota, Minneapolis, MN), O'Donoghue, K, Faras, A.J
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.08.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have analyzed the genome of the domestic chicken for the presence of genetic sequences related to the envelope protein-encoding genes of avian sarcoma/leukosis retroviruses to determine the organization, structure, potential functionality, and distribution of such sequences. We have previously identified in the genus Gallus an extensive group of endogenous avian retroviruses termed EAV-0. Southern blot and sequence analysis presented here of EAV-0 elements revealed that the majority of the EAV-0 elements in the domestic chicken genome have large deletions in their env genes. Screening of a line 0 chicken genomic DNA library for potential full-length env gene-containing endogenous elements yielded three provirus clones of a previously unrecognized group of endogenous retroviruses. These three clones, E13, E33, and E51, are more closely related to each other (80% or more sequence identity) than to other avian retroviruses (70% or less sequence identity). The E13 element has a large deletion in env, but the E51 element has full-length and highly divergent SU- and TM-coding domains. Complete sequence analysis of the E51 env gene region revealed a defective SU-coding domain and an intact TM-coding domain. Sequence analysis of the E51, E33, and E13 3' termini revealed highly distinctive long terminal repeats of approximately 360 bp which appear to be the products, in part, of long terminal repeat domain shuffling. Hybridization analysis with E51 and E33 env gene probes indicated that they are members of an extensive group of elements present in all Gallus species, and at least one element, E51, could be shown by polymerase chain reaction amplification and direct sequencing to have integrated prior to Gallus speciation
Bibliography:L73
9306493
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.66.8.4919-4929.1992