An HDAC inhibitor enhances the antitumor activity of a CMV promoter-driven DNA vaccine

The cytomegalovirus (CMV) promoter is considered to be one of the strongest promoters for driving the in vivo expression of genes encoded by DNA vaccines. However, the efficacy of DNA vaccines has so far been disappointing (particularly in humans), and this might be explained in part by histone deac...

Full description

Saved in:
Bibliographic Details
Published inCancer gene therapy Vol. 17; no. 3; pp. 203 - 211
Main Authors Lai, M-D, Chen, C-S, Yang, C-R, Yuan, S-Y, Tsai, J-J, Tu, C-F, Wang, C-C, Yen, M-C, Lin, C-C
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The cytomegalovirus (CMV) promoter is considered to be one of the strongest promoters for driving the in vivo expression of genes encoded by DNA vaccines. However, the efficacy of DNA vaccines has so far been disappointing (particularly in humans), and this might be explained in part by histone deacetylase (HDAC)-mediated chromatin condensation. Hence, we sought to investigate whether increasing the expression of DNA vaccine antigens with the HDAC inhibitor OSU-HDAC42 would enhance the efficacy of DNA vaccines in vivo . A luciferase assay was used to determine the effects of OSU-HDAC42 on CMV promoter-driven DNA plasmids in vitro and in vivo . Three HDAC inhibitors were able to activate expression from the CMV promoter in NIH3T3 cells and MBT-2 bladder cancer cells. The expression of luciferase was significantly enhanced by co-administration of pCMV-luciferase and OSU-HDAC42 in mice. To explore whether OSU-HDAC42 could enhance the specific antitumor activity of a neu DNA vaccine driven by the CMV promoter, we evaluated therapeutic effects and immune responses in a mouse tumor natively overexpressing HER2/neu. Mice receiving OSU-HDAC42 in combination with the CMV-promoter neu DNA vaccine exhibited stronger antitumor effects than mice given the DNA vaccine only. In addition, a correlation between the antitumor effects and the specific cellular immune responses was observed in the mice receiving the DNA vaccine and OSU-HDAC42.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0929-1903
1476-5500
DOI:10.1038/cgt.2009.65