Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
Tuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extend...
Saved in:
Published in | Nature materials Vol. 17; no. 9; pp. 827 - 833 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extended, model surfaces to practical nanomaterials remains highly challenging. Here, we propose ‘surface distortion’ as a novel structural descriptor, which is able to reconciliate and unify seemingly opposing notions and contradictory experimental observations in regards to the electrocatalytic oxygen reduction reaction (ORR) reactivity. Beyond its unifying character, we show that surface distortion is pivotal to rationalize the electrocatalytic properties of state-of-the-art of PtNi/C nanocatalysts with distinct atomic composition, size, shape and degree of surface defectiveness under a simulated PEMFC cathode environment. Our study brings fundamental and practical insights into the role of surface defects in electrocatalysis and highlights strategies to design more durable ORR nanocatalysts.
Tuning surface structure is key for electrocatalytic performance and stability of proton-exchange membrane fuel cells. Surface distortion as a structural descriptor can help to clarify the role of surface defects and to design enhanced nanocatalysts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6109589 Institute of Engineering Univ. Grenoble Alpes |
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/s41563-018-0133-2 |