RF9 Powerfully Stimulates Gonadotrophin Secretion in the Ewe: Evidence for a Seasonal Threshold of Sensitivity

GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagon...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroendocrinology Vol. 24; no. 5; pp. 725 - 736
Main Authors Caraty, A., Blomenröhr, M., Vogel, G. M. T., Lomet, D., Briant, C., Beltramo, M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2012
Blackwell
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
AbstractList GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 mu mol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 mu mol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 mu mol bolus i.v.) has an effective half life of 5.5h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 mu mol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH 2 ), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH 2 ). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 mu mol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 mu mol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 mu mol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the bloodbrain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 mu mol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
Author Briant, C.
Beltramo, M.
Caraty, A.
Lomet, D.
Blomenröhr, M.
Vogel, G. M. T.
Author_xml – sequence: 1
  givenname: A.
  surname: Caraty
  fullname: Caraty, A.
  organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France
– sequence: 2
  givenname: M.
  surname: Blomenröhr
  fullname: Blomenröhr, M.
  organization: MSD Research Institute, 5340BH, Oss, The Netherlands
– sequence: 3
  givenname: G. M. T.
  surname: Vogel
  fullname: Vogel, G. M. T.
  organization: MSD Research Institute, 5340BH, Oss, The Netherlands
– sequence: 4
  givenname: D.
  surname: Lomet
  fullname: Lomet, D.
  organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France
– sequence: 5
  givenname: C.
  surname: Briant
  fullname: Briant, C.
  organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France
– sequence: 6
  givenname: M.
  surname: Beltramo
  fullname: Beltramo, M.
  organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25845275$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22283564$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01129618$$DView record in HAL
BookMark eNqNkl2PEyEUholZ43ZX_4LhxkQvpvI1zIyJJpum213TrKZbY-INoQyTUulQgX79e5lttyZelRvg8LzvAc65AhetazUAEKM-TuPjoo8pzzNSEt4nCJM-IqSk_d0L0DsdXIAeqnKalbhil-AqhAVCuMgpegUuSYfnnPVAO7mt4He31b5ZW7uHj9Es11ZGHeDItbJ20bvV3LTwUSuvo3EtTJs413C41Z_gcGNq3SoNG-ehTJAMSWXhdO51mDtbQ9ekaBtMNBsT96_By0baoN8c52vw43Y4Hdxl42-j-8HNOFN5gWhWU81VzRGXpMJcKcU1U1yll-AZY6hkMueIIYmqRDJZUYVndFYjKjXOGavoNfhw8J1LK1beLKXfCyeNuLsZiy6GMCYVx-UGJ_b9gV1592etQxRLE5S2VrbarYPACDOMKCXFGSgqS1JWLE_o2yO6ni11fbrE89cn4N0RkEFJ23jZKhP-cXnJclJ0Rl8OnPIuBK8boUyUXSWil8amnKLrCbEQXelFV3rR9YR46gmxSwblfwbPOc6Qfj5It8bq_dk68fVh2K2SPjvoTYh6d9JL_1vwgha5-PkwEngy-TWaTqkY0L-uLtqv
CitedBy_id crossref_primary_10_1095_biolreprod_116_144998
crossref_primary_10_1210_endocr_bqad102
crossref_primary_10_1016_j_neuropharm_2017_03_012
crossref_primary_10_1016_j_npep_2017_07_005
crossref_primary_10_1038_s41598_018_24381_4
crossref_primary_10_1093_biolre_ioy145
crossref_primary_10_1111_jne_12137
crossref_primary_10_1016_j_peptides_2012_08_019
crossref_primary_10_1016_j_pharmthera_2016_02_005
crossref_primary_10_1016_j_cub_2014_05_024
crossref_primary_10_1177_0748730414532423
crossref_primary_10_1016_j_anireprosci_2015_11_018
crossref_primary_10_1210_en_2015_1635
crossref_primary_10_1007_s44338_024_00037_8
crossref_primary_10_3389_fphys_2021_630796
crossref_primary_10_1016_j_jevs_2017_07_013
crossref_primary_10_1016_j_domaniend_2012_04_001
crossref_primary_10_1016_j_npep_2016_05_004
crossref_primary_10_1016_j_anireprosci_2015_05_013
crossref_primary_10_1016_j_theriogenology_2016_04_045
crossref_primary_10_1016_j_jchromb_2019_121875
crossref_primary_10_3389_fendo_2021_781543
crossref_primary_10_1111_jne_12407
crossref_primary_10_1021_jm5019675
crossref_primary_10_1523_JNEUROSCI_2200_14_2014
crossref_primary_10_1095_biolreprod_115_128777
crossref_primary_10_1210_en_2014_1845
crossref_primary_10_1016_j_mehy_2019_05_016
crossref_primary_10_1002_mrd_22830
crossref_primary_10_1095_biolreprod_113_112185
crossref_primary_10_1111_jne_13124
crossref_primary_10_1002_cne_24659
crossref_primary_10_3389_fendo_2015_00189
crossref_primary_10_1210_en_2015_1854
crossref_primary_10_1210_en_2016_1902
crossref_primary_10_3389_fendo_2016_00036
crossref_primary_10_1210_en_2015_1532
crossref_primary_10_1016_j_mce_2016_06_026
crossref_primary_10_1016_j_yfrne_2018_03_005
crossref_primary_10_1210_en_2014_1517
crossref_primary_10_1590_1984_3143_ar2021_0063
crossref_primary_10_1016_j_domaniend_2020_106446
crossref_primary_10_1111_jne_12225
crossref_primary_10_1021_acs_jmedchem_1c00256
crossref_primary_10_1016_j_peptides_2013_07_003
crossref_primary_10_1530_REP_18_0127
crossref_primary_10_1111_nmo_13848
crossref_primary_10_1007_s11033_022_07447_5
crossref_primary_10_1210_en_2014_1030
crossref_primary_10_1016_j_archoralbio_2014_11_005
crossref_primary_10_1210_en_2012_1088
crossref_primary_10_3803_EnM_2016_31_2_193
Cites_doi 10.1152/ajpendo.00108.2010
10.1021/ml1002053
10.1210/en.2009-0775
10.1095/biolreprod48.1.197
10.1677/joe.0.1820033
10.1016/j.ygcen.2008.10.002
10.1016/j.bbrc.2004.05.185
10.1016/j.domaniend.2009.02.001
10.1677/JOE-08-0197
10.1210/en.2011-1622
10.1111/j.1365-2826.2010.02018.x
10.1073/pnas.0409822102
10.1210/en.2011-1110
10.1095/biolreprod46.6.1130
10.1210/en.2008-1359
10.1210/en.2009-1259
10.1530/jrf.0.0730173
10.1038/35079135
10.1016/S0014-2999(02)02224-0
10.1677/JOE-07-0504
10.1111/j.1365-2826.1990.tb00846.x
10.1210/en.2011-1228
10.1016/j.neuropharm.2006.07.034
10.1006/bbrc.2000.3350
10.1530/REP-07-0502
10.1210/en.2004-0836
10.1016/0753-3322(93)90299-Z
10.1016/j.domaniend.2010.01.001
10.1016/j.neuroscience.2010.06.058
10.1074/jbc.M105308200
10.1073/pnas.0409330102
10.1111/j.1365-2826.2008.01784.x
10.1073/pnas.0511003103
10.1016/j.yhbeh.2006.06.004
10.1038/35036326
10.1210/en.2007-0554
10.1073/pnas.0502090103
10.1210/en.138.11.5039
10.1002/mas.20031
10.1074/jbc.M104847200
10.1210/jc.2005-1468
10.1210/en.2008-0575
10.1113/expphysiol.2004.027169
10.1016/j.anireprosci.2009.05.017
10.1210/en.2008-1698
10.1210/en.2008-1287
10.1210/endo.136.8.7628356
ContentType Journal Article
Copyright 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd
2015 INIST-CNRS
2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
1XC
DOI 10.1111/j.1365-2826.2012.02283.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1365-2826
EndPage 736
ExternalDocumentID oai_HAL_hal_01129618v1
22283564
25845275
10_1111_j_1365_2826_2012_02283_x
JNE2283
ark_67375_WNG_1RRZGTT3_C
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AETEA
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
1XC
ID FETCH-LOGICAL-c5703-d3e6cd606a2916ccc6e4c6c1941b44084a56040a09d3e4a93c1b3bd03ae154493
IEDL.DBID DR2
ISSN 0953-8194
1365-2826
IngestDate Wed May 21 12:41:39 EDT 2025
Fri Jul 11 01:08:25 EDT 2025
Fri Jul 11 09:54:57 EDT 2025
Thu Apr 03 07:05:00 EDT 2025
Mon Jul 21 09:14:39 EDT 2025
Tue Jul 01 02:01:30 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
Wed Oct 30 09:49:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords RF9
Secretion
RFRP3
Gonadotropin RH
Hypothalamic hormone
Vertebrata
Ewe
Sensitivity
Mammalia
Adenohypophyseal hormone
Animal
Luteinizing hormone
Sheep
Artiodactyla
Hormone releasing factor
GnRH
LH
Ungulata
GPR147
rf9
rfrp3
gpr147
anoestrus
lh
gnrh
sheep
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5703-d3e6cd606a2916ccc6e4c6c1941b44084a56040a09d3e4a93c1b3bd03ae154493
Notes istex:782CAB2CE08BF141C73B9AA60A801CAAB27A115C
ArticleID:JNE2283
ark:/67375/WNG-1RRZGTT3-C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Feature-1
ORCID 0000-0003-3472-2477
PMID 22283564
PQID 1008828945
PQPubID 23479
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01129618v1
proquest_miscellaneous_1014103327
proquest_miscellaneous_1008828945
pubmed_primary_22283564
pascalfrancis_primary_25845275
crossref_citationtrail_10_1111_j_1365_2826_2012_02283_x
crossref_primary_10_1111_j_1365_2826_2012_02283_x
wiley_primary_10_1111_j_1365_2826_2012_02283_x_JNE2283
istex_primary_ark_67375_WNG_1RRZGTT3_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Journal of neuroendocrinology
PublicationTitleAlternate J Neuroendocrinol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley
References Kadokawa H, Matsui M, Hayashi K, Matsunaga N, Kawashima C, Shimizu T, Kida K, Miyamoto A. Peripheral administration of kisspeptin-10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers. J Endocrinol 2008; 196: 331-334.
Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148: 5258-5267.
Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276: 34631-34636.
Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005; 146: 156-163.
Dockray GJ. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229-235.
Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 2000; 275: 661-667.
Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications. Endocrinology 2010; 151: 1902-1913.
Deghenghi R, Boutignon F, Wuthrich P, Lenaerts V. Antarelix (EP 24332) a novel water soluble LHRH antagonist. Biomed Pharmacother 1993; 47: 107-110.
Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav 2006; 50: 655-666.
Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur J Pharmacol 2002; 451: 245-256.
Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-2415.
Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 2009; 150: 1834-1840.
Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008; 135: 879-887.
Anderson GM, Augustine R, Rizwan MZ, Cornes P. RF-amide-related peptide-3 (RFRP-3) regulates LH secretion exclusively via a GnRH-dependent mechanism in the rat. Soc Neurosci Ann Meet 2011; Poster 713.12.
Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 2010; 22: 716-727.
Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2010; 299: E39-E46.
Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005; 102: 1761-1766.
Ancel C, Bentsen AH, Sébert M-E, Tena-Sempere M, Mikkelsen JD, Simonneaux V. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule. Endocrinology 2012; 153: 1-12.
Oishi S, Misu R, Tomita K, Setsuda S, Masuda R, Ohno H, Naniwa Y, Ieda N, Inoue N, Ohkura S, Uenoyama Y, Tsukamura H, Maeda K, Hirasawa A, Tsujimoto G, Fujii N. Activation of neuropeptide FF receprot by kisspeptin receptor ligand. ACS Med Chem Lett 2011; 2: 53-57.
Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150: 2813-2821.
Jansen HT, Lubbers LS, Macchia E, DeGroot LJ, Lehman MN. Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin-releasing hormone and other identified neurons. Endocrinology 1997; 138: 5039-5047.
Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL Jr, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 2001; 276: 36961-36969.
Gouarderes C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology 2007; 52: 376-386.
Goldsmith PC, Thind KK, Song T, Kim EJ, Boggant JE. Location of the neuroendocrine gonadotropin-releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining. J Neuroendocrinol 1990; 2: 157-168.
Tsutsui K, Osugi T. Evolutionary origin and divergence of GnIH and its homologous peptides. Gen Comp Endocrinol 2009; 161: 30-33.
Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411: 613-617.
Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320: 383-388.
Osugi T, Ukena K, Bentley GE, O'Brien S, Moore IT, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments. J Endocrinol 2004; 182: 33-42.
Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 2008; 199: 105-112.
Montgomery GW, Martin GB, Pelletier J. Changes in pulsatile LH secretion after ovariectomy in Ile-de-France ewes in two seasons. J Reprod Fertil 1985; 73: 173-183.
Lyubimov Y, Engstrom M, Wurster S, Savola JM, Korpi ER, Panula P. Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170: 117-122.
Skinner DC, Malpaux B, Delaleu B, Caraty A. Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge. Endocrinology 1995; 136: 3230-3237.
Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 2011; 152: 3832-3841.
Rizwan MZ, Porteous R, Herbison AE, Anderson GM. Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 2009; 150: 1413-1420.
Sebert ME, Lomet D, Said SB, Monget P, Briant C, Scaramuzzi RJ, Caraty A. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest Anim Endocrinol 2010; 38: 289-298.
Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 2009; 150: 5549-5556.
Dardente H, Birnie M, Lincoln GA, Hazlerigg DG. RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J Neuroendocrinol 2008; 20: 1252-1259.
Rhim TJ, Kuehl D, Jackson GL. Seasonal changes in the relationships between secretion of gonadotropin-releasing hormone, luteinizing hormone, and testosterone in the ram. Biol Reprod 1993; 48: 197-204.
Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102: 2129-2134.
Pelletier J, Kann G, Dolais J, Rosselin G. [Radio-immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]. C R Acad Sci Hebd Seances Acad Sci D 1968; 266: 2352-2354.
Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci USA 2006; 103: 466-471.
Ukena K, Tsutsui K. A new
1993; 48
2004; 320
1993; 47
2007; 148
1997; 138
2010; 38
2006; 50
2011; 2
1968; 266
2011
2002; 451
2005; 90
2004; 89
2004; 182
2009; 150
2000; 2
2008; 149
2000; 275
1995; 136
2007; 52
2011; 152
2005; 24
2001; 276
2010; 22
1990; 2
2009; 36
2012; 153
2010; 118
2005; 102
2005; 146
2010; 299
2009; 161
1985; 73
1992; 46
2010; 151
2010; 170
2008; 135
2008; 20
2008; 199
2008; 196
2001; 411
2006; 103
e_1_2_6_30_2
Anderson GM (e_1_2_6_42_2) 2011
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
Pelletier J (e_1_2_6_33_2) 1968; 266
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 2010; 22: 716-727.
– reference: Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005; 90: 6609-6615.
– reference: Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL Jr, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 2001; 276: 36961-36969.
– reference: Jansen HT, Lubbers LS, Macchia E, DeGroot LJ, Lehman MN. Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin-releasing hormone and other identified neurons. Endocrinology 1997; 138: 5039-5047.
– reference: Skinner DC, Malpaux B, Delaleu B, Caraty A. Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge. Endocrinology 1995; 136: 3230-3237.
– reference: Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. Mass Spectrom Rev 2005; 24: 469-486.
– reference: Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ, Tsutsui K. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 2012; 153: 373-385.
– reference: Clarke IJ, Sari IP, Qi Y, Smith JT, Parkington HC, Ubuka T, Iqbal J, Li Q, Tilbrook A, Morgan K, Pawson AJ, Tsutsui K, Millar RP, Bentley GE. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 2008; 149: 5811-5821.
– reference: Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 2000; 275: 661-667.
– reference: Rizwan MZ, Porteous R, Herbison AE, Anderson GM. Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 2009; 150: 1413-1420.
– reference: Ancel C, Bentsen AH, Sébert M-E, Tena-Sempere M, Mikkelsen JD, Simonneaux V. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule. Endocrinology 2012; 153: 1-12.
– reference: Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2000; 2: 703-708.
– reference: Hashizume T, Saito H, Sawada T, Yaegashi T, Ezzat AA, Sawai K, Yamashita T. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci 2010; 118: 37-41.
– reference: Barrell GK, Moenter SM, Caraty A, Karsch FJ. Seasonal changes of gonadotropin-releasing hormone secretion in the ewe. Biol Reprod 1992; 46: 1130-1135.
– reference: Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008; 135: 879-887.
– reference: Dardente H, Birnie M, Lincoln GA, Hazlerigg DG. RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J Neuroendocrinol 2008; 20: 1252-1259.
– reference: Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102: 2129-2134.
– reference: Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150: 2813-2821.
– reference: Kadokawa H, Matsui M, Hayashi K, Matsunaga N, Kawashima C, Shimizu T, Kida K, Miyamoto A. Peripheral administration of kisspeptin-10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers. J Endocrinol 2008; 196: 331-334.
– reference: Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci USA 2006; 103: 466-471.
– reference: Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005; 102: 1761-1766.
– reference: Goldsmith PC, Thind KK, Song T, Kim EJ, Boggant JE. Location of the neuroendocrine gonadotropin-releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining. J Neuroendocrinol 1990; 2: 157-168.
– reference: Tsutsui K, Osugi T. Evolutionary origin and divergence of GnIH and its homologous peptides. Gen Comp Endocrinol 2009; 161: 30-33.
– reference: Osugi T, Ukena K, Bentley GE, O'Brien S, Moore IT, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments. J Endocrinol 2004; 182: 33-42.
– reference: Lyubimov Y, Engstrom M, Wurster S, Savola JM, Korpi ER, Panula P. Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170: 117-122.
– reference: Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 2009; 150: 5549-5556.
– reference: Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320: 383-388.
– reference: Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005; 146: 156-163.
– reference: Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur J Pharmacol 2002; 451: 245-256.
– reference: Sebert ME, Lomet D, Said SB, Monget P, Briant C, Scaramuzzi RJ, Caraty A. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest Anim Endocrinol 2010; 38: 289-298.
– reference: Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 2008; 199: 105-112.
– reference: Gouarderes C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology 2007; 52: 376-386.
– reference: Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2010; 299: E39-E46.
– reference: Oishi S, Misu R, Tomita K, Setsuda S, Masuda R, Ohno H, Naniwa Y, Ieda N, Inoue N, Ohkura S, Uenoyama Y, Tsukamura H, Maeda K, Hirasawa A, Tsujimoto G, Fujii N. Activation of neuropeptide FF receprot by kisspeptin receptor ligand. ACS Med Chem Lett 2011; 2: 53-57.
– reference: Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 2011; 152: 3832-3841.
– reference: Montgomery GW, Martin GB, Pelletier J. Changes in pulsatile LH secretion after ovariectomy in Ile-de-France ewes in two seasons. J Reprod Fertil 1985; 73: 173-183.
– reference: Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411: 613-617.
– reference: Kadokawa H, Shibata M, Tanaka Y, Kojima T, Matsumoto K, Oshima K, Yamamoto N. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest Anim Endocrinol 2009; 36: 219-224.
– reference: Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276: 34631-34636.
– reference: Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications. Endocrinology 2010; 151: 1902-1913.
– reference: Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148: 5258-5267.
– reference: Deghenghi R, Boutignon F, Wuthrich P, Lenaerts V. Antarelix (EP 24332) a novel water soluble LHRH antagonist. Biomed Pharmacother 1993; 47: 107-110.
– reference: Pelletier J, Kann G, Dolais J, Rosselin G. [Radio-immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]. C R Acad Sci Hebd Seances Acad Sci D 1968; 266: 2352-2354.
– reference: Dockray GJ. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229-235.
– reference: Anderson GM, Augustine R, Rizwan MZ, Cornes P. RF-amide-related peptide-3 (RFRP-3) regulates LH secretion exclusively via a GnRH-dependent mechanism in the rat. Soc Neurosci Ann Meet 2011; Poster 713.12.
– reference: Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 2009; 150: 1834-1840.
– reference: Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav 2006; 50: 655-666.
– reference: Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-2415.
– reference: Rhim TJ, Kuehl D, Jackson GL. Seasonal changes in the relationships between secretion of gonadotropin-releasing hormone, luteinizing hormone, and testosterone in the ram. Biol Reprod 1993; 48: 197-204.
– volume: 148
  start-page: 5258
  year: 2007
  end-page: 5267
  article-title: Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes
  publication-title: Endocrinology
– volume: 411
  start-page: 613
  year: 2001
  end-page: 617
  article-title: Metastasis suppressor gene KiSS‐1 encodes peptide ligand of a G‐protein‐coupled receptor
  publication-title: Nature
– volume: 153
  start-page: 1
  year: 2012
  end-page: 12
  article-title: Stimulatory effect of RFRP‐3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule
  publication-title: Endocrinology
– volume: 36
  start-page: 219
  year: 2009
  end-page: 224
  article-title: Bovine C‐terminal octapeptide of RFamide‐related peptide‐3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines
  publication-title: Domest Anim Endocrinol
– volume: 320
  start-page: 383
  year: 2004
  end-page: 388
  article-title: Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat
  publication-title: Biochem Biophys Res Commun
– volume: 20
  start-page: 1252
  year: 2008
  end-page: 1259
  article-title: RFamide‐related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod
  publication-title: J Neuroendocrinol
– volume: 199
  start-page: 105
  year: 2008
  end-page: 112
  article-title: Hypophysiotropic role of RFamide‐related peptide‐3 in the inhibition of LH secretion in female rats
  publication-title: J Endocrinol
– volume: 152
  start-page: 3832
  year: 2011
  end-page: 3841
  article-title: Gonadotropin‐releasing hormone neurons extend complex highly branched dendritic trees outside the blood‐brain barrier
  publication-title: Endocrinology
– volume: 276
  start-page: 36961
  year: 2001
  end-page: 36969
  article-title: Identification and characterization of novel mammalian neuropeptide FF‐like peptides that attenuate morphine‐induced antinociception
  publication-title: J Biol Chem
– volume: 150
  start-page: 5549
  year: 2009
  end-page: 5556
  article-title: Effect of RF‐amide‐related peptide‐3 on luteinizing hormone and follicle‐stimulating hormone synthesis and secretion in ovine pituitary gonadotropes
  publication-title: Endocrinology
– volume: 102
  start-page: 2129
  year: 2005
  end-page: 2134
  article-title: Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates
  publication-title: Proc Natl Acad Sci USA
– volume: 47
  start-page: 107
  year: 1993
  end-page: 110
  article-title: Antarelix (EP 24332) a novel water soluble LHRH antagonist
  publication-title: Biomed Pharmacother
– volume: 2
  start-page: 157
  year: 1990
  end-page: 168
  article-title: Location of the neuroendocrine gonadotropin‐releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining
  publication-title: J Neuroendocrinol
– volume: 146
  start-page: 156
  year: 2005
  end-page: 163
  article-title: Characterization of the potent luteinizing hormone‐releasing activity of KiSS‐1 peptide, the natural ligand of GPR54
  publication-title: Endocrinology
– volume: 24
  start-page: 469
  year: 2005
  end-page: 486
  article-title: A new member of the hypothalamic RF‐amide peptide family, LPXRF‐amide peptides: structure, localization, and function
  publication-title: Mass Spectrom Rev
– volume: 150
  start-page: 1413
  year: 2009
  end-page: 1420
  article-title: Cells expressing RFamide‐related peptide‐1/3, the mammalian gonadotropin‐inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat
  publication-title: Endocrinology
– volume: 266
  start-page: 2352
  year: 1968
  end-page: 2354
  article-title: [Radio‐immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]
  publication-title: C R Acad Sci Hebd Seances Acad Sci D
– volume: 151
  start-page: 1902
  year: 2010
  end-page: 1913
  article-title: Characterization of the potent gonadotropin‐releasing activity of RF9, a selective antagonist of RF‐amide‐related peptides and neuropeptide FF receptors: physiological and pharmacological implications
  publication-title: Endocrinology
– volume: 153
  start-page: 373
  year: 2012
  end-page: 385
  article-title: Identification, expression, and physiological functions of Siberian hamster gonadotropin‐inhibitory hormone
  publication-title: Endocrinology
– volume: 2
  start-page: 53
  year: 2011
  end-page: 57
  article-title: Activation of neuropeptide FF receprot by kisspeptin receptor ligand
  publication-title: ACS Med Chem Lett
– volume: 89
  start-page: 229
  year: 2004
  end-page: 235
  article-title: The expanding family of ‐RFamide peptides and their effects on feeding behaviour
  publication-title: Exp Physiol
– volume: 299
  start-page: E39
  year: 2010
  end-page: E46
  article-title: Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies
  publication-title: Am J Physiol Endocrinol Metab
– volume: 38
  start-page: 289
  year: 2010
  end-page: 298
  article-title: Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol
  publication-title: Domest Anim Endocrinol
– volume: 150
  start-page: 2813
  year: 2009
  end-page: 2821
  article-title: Biological and anatomical evidence for kisspeptin regulation of the hypothalamic‐pituitary‐gonadal axis of estrous horse mares
  publication-title: Endocrinology
– volume: 276
  start-page: 34631
  year: 2001
  end-page: 34636
  article-title: The metastasis suppressor gene KiSS‐1 encodes kisspeptins, the natural ligands of the orphan G protein‐coupled receptor GPR54
  publication-title: J Biol Chem
– volume: 150
  start-page: 1834
  year: 2009
  end-page: 1840
  article-title: Central and peripheral effects of RFamide‐related peptide‐3 on luteinizing hormone and prolactin secretion in rats
  publication-title: Endocrinology
– volume: 73
  start-page: 173
  year: 1985
  end-page: 183
  article-title: Changes in pulsatile LH secretion after ovariectomy in Ile‐de‐France ewes in two seasons
  publication-title: J Reprod Fertil
– volume: 275
  start-page: 661
  year: 2000
  end-page: 667
  article-title: A novel avian hypothalamic peptide inhibiting gonadotropin release
  publication-title: Biochem Biophys Res Commun
– volume: 2
  start-page: 703
  year: 2000
  end-page: 708
  article-title: New neuropeptides containing carboxy‐terminal RFamide and their receptor in mammals
  publication-title: Nat Cell Biol
– volume: 46
  start-page: 1130
  year: 1992
  end-page: 1135
  article-title: Seasonal changes of gonadotropin‐releasing hormone secretion in the ewe
  publication-title: Biol Reprod
– volume: 451
  start-page: 245
  year: 2002
  end-page: 256
  article-title: Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists
  publication-title: Eur J Pharmacol
– volume: 161
  start-page: 30
  year: 2009
  end-page: 33
  article-title: Evolutionary origin and divergence of GnIH and its homologous peptides
  publication-title: Gen Comp Endocrinol
– volume: 52
  start-page: 376
  year: 2007
  end-page: 386
  article-title: Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide‐related peptides on stimulation of [35S]GTPgammaS binding
  publication-title: Neuropharmacology
– volume: 50
  start-page: 655
  year: 2006
  end-page: 666
  article-title: Driving reproduction: RFamide peptides behind the wheel
  publication-title: Horm Behav
– volume: 103
  start-page: 466
  year: 2006
  end-page: 471
  article-title: RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid‐induced tolerance associated with hyperalgesia
  publication-title: Proc Natl Acad Sci USA
– year: 2011
  article-title: RF‐amide‐related peptide‐3 (RFRP‐3) regulates LH secretion exclusively via a GnRH‐dependent mechanism in the rat
  publication-title: Soc Neurosci Ann Meet
– volume: 182
  start-page: 33
  year: 2004
  end-page: 42
  article-title: Gonadotropin‐inhibitory hormone in Gambel’s white‐crowned sparrow ( ): cDNA identification, transcript localization and functional effects in laboratory and field experiments
  publication-title: J Endocrinol
– volume: 102
  start-page: 1761
  year: 2005
  end-page: 1766
  article-title: Kisspeptin directly stimulates gonadotropin‐releasing hormone release via G protein‐coupled receptor 54
  publication-title: Proc Natl Acad Sci USA
– volume: 135
  start-page: 879
  year: 2008
  end-page: 887
  article-title: Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts
  publication-title: Reproduction
– volume: 118
  start-page: 37
  year: 2010
  end-page: 41
  article-title: Characteristics of stimulation of gonadotropin secretion by kisspeptin‐10 in female goats
  publication-title: Anim Reprod Sci
– volume: 90
  start-page: 6609
  year: 2005
  end-page: 6615
  article-title: Kisspeptin‐54 stimulates the hypothalamic‐pituitary gonadal axis in human males
  publication-title: J Clin Endocrinol Metab
– volume: 149
  start-page: 5811
  year: 2008
  end-page: 5821
  article-title: Potent action of RFamide‐related peptide‐3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion
  publication-title: Endocrinology
– volume: 170
  start-page: 117
  year: 2010
  end-page: 122
  article-title: Human kisspeptins activate neuropeptide FF2 receptor
  publication-title: Neuroscience
– volume: 48
  start-page: 197
  year: 1993
  end-page: 204
  article-title: Seasonal changes in the relationships between secretion of gonadotropin‐releasing hormone, luteinizing hormone, and testosterone in the ram
  publication-title: Biol Reprod
– volume: 138
  start-page: 5039
  year: 1997
  end-page: 5047
  article-title: Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin‐releasing hormone and other identified neurons
  publication-title: Endocrinology
– volume: 22
  start-page: 716
  year: 2010
  end-page: 727
  article-title: Discovery and evolutionary history of gonadotrophin‐inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction
  publication-title: J Neuroendocrinol
– volume: 196
  start-page: 331
  year: 2008
  end-page: 334
  article-title: Peripheral administration of kisspeptin‐10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers
  publication-title: J Endocrinol
– volume: 103
  start-page: 2410
  year: 2006
  end-page: 2415
  article-title: Identification and characterization of a gonadotropin‐inhibitory system in the brains of mammals
  publication-title: Proc Natl Acad Sci USA
– volume: 136
  start-page: 3230
  year: 1995
  end-page: 3237
  article-title: Luteinizing hormone (LH)‐releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge
  publication-title: Endocrinology
– ident: e_1_2_6_26_2
  doi: 10.1152/ajpendo.00108.2010
– ident: e_1_2_6_49_2
  doi: 10.1021/ml1002053
– ident: e_1_2_6_41_2
  doi: 10.1210/en.2009-0775
– ident: e_1_2_6_35_2
  doi: 10.1095/biolreprod48.1.197
– ident: e_1_2_6_17_2
  doi: 10.1677/joe.0.1820033
– ident: e_1_2_6_16_2
  doi: 10.1016/j.ygcen.2008.10.002
– volume: 266
  start-page: 2352
  year: 1968
  ident: e_1_2_6_33_2
  article-title: [Radio‐immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]
  publication-title: C R Acad Sci Hebd Seances Acad Sci D
– ident: e_1_2_6_5_2
  doi: 10.1016/j.bbrc.2004.05.185
– ident: e_1_2_6_25_2
  doi: 10.1016/j.domaniend.2009.02.001
– ident: e_1_2_6_27_2
  doi: 10.1677/JOE-08-0197
– ident: e_1_2_6_40_2
  doi: 10.1210/en.2011-1622
– ident: e_1_2_6_2_2
  doi: 10.1111/j.1365-2826.2010.02018.x
– ident: e_1_2_6_7_2
  doi: 10.1073/pnas.0409822102
– ident: e_1_2_6_23_2
  doi: 10.1210/en.2011-1110
– ident: e_1_2_6_36_2
  doi: 10.1095/biolreprod46.6.1130
– ident: e_1_2_6_28_2
  doi: 10.1210/en.2008-1359
– ident: e_1_2_6_30_2
  doi: 10.1210/en.2009-1259
– ident: e_1_2_6_34_2
  doi: 10.1530/jrf.0.0730173
– ident: e_1_2_6_38_2
  doi: 10.1038/35079135
– year: 2011
  ident: e_1_2_6_42_2
  article-title: RF‐amide‐related peptide‐3 (RFRP‐3) regulates LH secretion exclusively via a GnRH‐dependent mechanism in the rat
  publication-title: Soc Neurosci Ann Meet
– ident: e_1_2_6_47_2
  doi: 10.1016/S0014-2999(02)02224-0
– ident: e_1_2_6_10_2
  doi: 10.1677/JOE-07-0504
– ident: e_1_2_6_43_2
  doi: 10.1111/j.1365-2826.1990.tb00846.x
– ident: e_1_2_6_45_2
  doi: 10.1210/en.2011-1228
– ident: e_1_2_6_48_2
  doi: 10.1016/j.neuropharm.2006.07.034
– ident: e_1_2_6_15_2
  doi: 10.1006/bbrc.2000.3350
– ident: e_1_2_6_9_2
  doi: 10.1530/REP-07-0502
– ident: e_1_2_6_6_2
  doi: 10.1210/en.2004-0836
– ident: e_1_2_6_31_2
  doi: 10.1016/0753-3322(93)90299-Z
– ident: e_1_2_6_13_2
  doi: 10.1016/j.domaniend.2010.01.001
– ident: e_1_2_6_50_2
  doi: 10.1016/j.neuroscience.2010.06.058
– ident: e_1_2_6_46_2
  doi: 10.1074/jbc.M105308200
– ident: e_1_2_6_4_2
  doi: 10.1073/pnas.0409330102
– ident: e_1_2_6_20_2
  doi: 10.1111/j.1365-2826.2008.01784.x
– ident: e_1_2_6_21_2
  doi: 10.1073/pnas.0511003103
– ident: e_1_2_6_39_2
  doi: 10.1016/j.yhbeh.2006.06.004
– ident: e_1_2_6_14_2
  doi: 10.1038/35036326
– ident: e_1_2_6_37_2
  doi: 10.1210/en.2007-0554
– ident: e_1_2_6_29_2
  doi: 10.1073/pnas.0502090103
– ident: e_1_2_6_44_2
  doi: 10.1210/en.138.11.5039
– ident: e_1_2_6_18_2
  doi: 10.1002/mas.20031
– ident: e_1_2_6_3_2
  doi: 10.1074/jbc.M104847200
– ident: e_1_2_6_8_2
  doi: 10.1210/jc.2005-1468
– ident: e_1_2_6_24_2
  doi: 10.1210/en.2008-0575
– ident: e_1_2_6_22_2
  doi: 10.1113/expphysiol.2004.027169
– ident: e_1_2_6_12_2
  doi: 10.1016/j.anireprosci.2009.05.017
– ident: e_1_2_6_11_2
  doi: 10.1210/en.2008-1698
– ident: e_1_2_6_19_2
  doi: 10.1210/en.2008-1287
– ident: e_1_2_6_32_2
  doi: 10.1210/endo.136.8.7628356
SSID ssj0017530
Score 2.287447
Snippet GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit...
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 725
SubjectTerms Adamantane - administration & dosage
Adamantane - analogs & derivatives
Adamantane - pharmacokinetics
Adamantane - pharmacology
Animals
Biological and medical sciences
Blood-brain barrier
Central Nervous System - drug effects
Central Nervous System - metabolism
Cerebrospinal fluid
Data processing
Dipeptides - administration & dosage
Dipeptides - pharmacokinetics
Dipeptides - pharmacology
Dose-Response Relationship, Drug
Drug Resistance - drug effects
Drug Resistance - physiology
Female
Fundamental and applied biological sciences. Psychology
GnRH
Gonadotropin-releasing hormone
Gonadotropins - secretion
GPR147
Half-Life
Hormones
Hypothalamus
Injections, Intravenous
Injections, Intraventricular
Life Sciences
Luteinizing hormone
Luteinizing Hormone - secretion
Neurons and Cognition
Peripheral blood
Pharmacokinetics
Pituitary
Pituitary (anterior)
Receptors, Neuropeptide - antagonists & inhibitors
Reproduction
Reproduction - drug effects
Reproduction - physiology
RF9
RFRP3
Seasons
Secretion
Sheep
Up-Regulation - drug effects
Vertebrates: endocrinology
Title RF9 Powerfully Stimulates Gonadotrophin Secretion in the Ewe: Evidence for a Seasonal Threshold of Sensitivity
URI https://api.istex.fr/ark:/67375/WNG-1RRZGTT3-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2826.2012.02283.x
https://www.ncbi.nlm.nih.gov/pubmed/22283564
https://www.proquest.com/docview/1008828945
https://www.proquest.com/docview/1014103327
https://hal.science/hal-01129618
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZge-GF24CFS2UQ2lsqJ3ZuvHWjF01Qoa4TEy-W7TjaVJZOTQsbv55znDZb0IQmxFvr2qly8jn-jvPlO4S8VwLSjixIfaEj5os0ML5K48w3htkgSQBDDF9w_jyOR8fi8CQ6Weuf8F2Y2h-i2XDDmeHu1zjBla7ak9wptIAfo0Ir7Donly7ySfwB-dGkcZJCP0pW2-5xHxZB0Rb13Hqg1kp1_xR1ktsY-kvUT6oKQljUtS9uI6dtrusWq8EjMtucZq1RmXVXS901v_5wgPw_cXhMHq45Le3VIHxC7tnyKdnplZDPn1_RPepUpm77foeUk0FGv2BpNtz4v6JHy7NzrCBmKzqEpABy5MX84vSspEfIZxE1FL4AS6X9n_YD3RRBpcC1qYJOyqUSdAqQrPBJGp0X0FqiEg2rYjwjx4P-9GDkr2s--Aa9wPyc29jkkFWpEIirMSa2wsQGrligsTi2UEDRBFMsg55CZdwEmuuccWXRVyjjz8lWOS_tLqFhytKkgINwZkSQ5TrLdJFqUeics7QQHkk211eatSE61uX4Lm8kRhBaiaGVGFrpQisvPRI0Iy9qU5A7jHkHEGq6o6v3qPdJYhtDzhsH6Y_AI3sOYU03tZih8i6J5NfxUAaTybfhdMrlgUc6LQg2A0IglFGYRB55u8GkhBsGPgVSpZ2vKjSpTjHNFn_tg_JfzsPEIy9qQF__A55PFEP4YgfLO0dAHo77-Onlvw58RR5gcy03fU22louVfQOUcKk7ZLu3_3F_0HGT_jcu6077
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPcCFV6GERzEI9ZaVHTsvbqtqH5TtCm1TUXGxbCdRq7bZah_Q8uuZcXYDQRWqELfdaJwok3HyjfPl-wh5ryW0HSlPfGlC5suEW18nUepbywoex1BDDD9wPhhHwyO5fxwer-yA8FuYWh-iWXDDmeHu1zjBcUG6PcsdRQsAMlK0go6TcukAoNxEg2_XX00aLSlUpGS18J7w4TEo27SeG_fUelbdPUGm5CYm_woZlHoOSSxr94ub4Gkb7brHVf8hOV-faM1SOessF6Zjf_yhAfmfMvGIPFjBWtqt6_AxuVNUT8hWt4KW_uKa7lJHNHUr-FukmvRT-hnd2fAA1_RwcXqBJmLFnA6gL4A2eTa9PDmt6CFCWiwcCn8AqNLe9-IDXfugUoDbVEOQdt0EzaAq5_gyjU5L2FohGQ2NMZ6So34v2xv6K9sH36IcmJ-LIrI5NFY6AOxqrY0KaSMLl4wb9MeWGlCaZJqlECl1Kiw3wuRM6AKlhVLxjGxU06p4TmiQsCQuYSeCWcnT3KSpKRMjS5MLlpTSI_H6Aiu70kRHa45z9VtvBKlVmFqFqVUuterKI7wZeVnrgtxizDuooSYchb2H3ZHCbQxhb8STb9wju67EmjA9O0PyXRyqL-OB4pPJ10GWCbXnkZ1WDTYDAsCUYRCHHnm7LkoF9wx8EaSrYrqco051gp22_GsMMoCFCGKPbNcV_esIeD5hBOmLXF3eOgNqf9zDXy_-deAbcm-YHYzU6OP400tyH0Nq9ukrsrGYLYvXgBAXZsfN_J-M61Gk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgkxAvDBiXDBgGob2lcmLnxlu19cIY1dR1YuLFsh1Hm8rSqhfY-PWc47SBoAlNiLcmOk6Vk8_Jd5wv3yHknRJQdmRB6gsdMV-kgfFVGme-McwGSQIYYviB86dB3D8Vh2fR2Ur_hN_CVP4Q9YIbzgx3v8YJPs2L5iR3Ci3gx6jQClvOyaUFfHJTxCxFhB8MayspNKRkle8e9-EpKJqqnhuP1HhU3T1HoeQm5v4KBZRqDjksquYXN7HTJtl1T6vuFhmvz7MSqYxby4VumR9_WED-n0Q8JA9WpJa2KxQ-Inds-Zhst0so6C-v6R51MlO3fr9NymE3o8fYmw1X_q_pyeLiEluI2TntQVUARfJsMj2_KOkJElqEDYUNoKm0892-p-suqBTINlUQpFwtQUeAyTm-SqOTAvaWKEXDthhPyGm3M9rv-6umD75BMzA_5zY2OZRVKgTmaoyJrTCxgSsWaOyOLRRwNMEUyyBSqIybQHOdM64sGgtl_CnZKCelfU5omLI0KeAgnBkRZLnOMl2kWhQ65ywthEeS9fWVZuWIjo05vsrfKiNIrcTUSkytdKmVVx4J6pHTyhXkFmPeAoTqcLT17rePJO5jSHrjIP0WeGTPIawOU7MxSu-SSH4e9GQwHH7pjUZc7ntktwHBekAIjDIKk8gjb9aYlHDHwNdAqrST5RxdqlOss8VfY1D_y3mYeORZBehf_4DnE8WQvtjB8tYZkIeDDv7a-deBr8m944OuPPow-PiC3MeISnr6kmwsZkv7CujhQu-6ef8TXxFQXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF9+Powerfully+Stimulates+Gonadotrophin+Secretion+in+the+Ewe%3A+Evidence+for+a+Seasonal+Threshold+of+Sensitivity&rft.jtitle=Journal+of+neuroendocrinology&rft.au=Caraty%2C+A&rft.au=Blomenrohr%2C+M&rft.au=Vogel%2C+GMT&rft.au=Lomet%2C+D&rft.date=2012-05-01&rft.issn=0953-8194&rft.eissn=1365-2826&rft.volume=24&rft.issue=5&rft.spage=725&rft.epage=736&rft_id=info:doi/10.1111%2Fj.1365-2826.2012.02283.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon