RF9 Powerfully Stimulates Gonadotrophin Secretion in the Ewe: Evidence for a Seasonal Threshold of Sensitivity
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagon...
Saved in:
Published in | Journal of neuroendocrinology Vol. 24; no. 5; pp. 725 - 736 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2012
Blackwell Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. |
---|---|
AbstractList | GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 mu mol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 mu mol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 mu mol bolus i.v.) has an effective half life of 5.5h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 mu mol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl‐RF‐2‐NH 2 ), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50–450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood–brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin‐releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF‐NH 2 ). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH2), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 mu mol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 mu mol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 mu mol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the bloodbrain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 mu mol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH2). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals. |
Author | Briant, C. Beltramo, M. Caraty, A. Lomet, D. Blomenröhr, M. Vogel, G. M. T. |
Author_xml | – sequence: 1 givenname: A. surname: Caraty fullname: Caraty, A. organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France – sequence: 2 givenname: M. surname: Blomenröhr fullname: Blomenröhr, M. organization: MSD Research Institute, 5340BH, Oss, The Netherlands – sequence: 3 givenname: G. M. T. surname: Vogel fullname: Vogel, G. M. T. organization: MSD Research Institute, 5340BH, Oss, The Netherlands – sequence: 4 givenname: D. surname: Lomet fullname: Lomet, D. organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France – sequence: 5 givenname: C. surname: Briant fullname: Briant, C. organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France – sequence: 6 givenname: M. surname: Beltramo fullname: Beltramo, M. organization: UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25845275$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22283564$$D View this record in MEDLINE/PubMed https://hal.science/hal-01129618$$DView record in HAL |
BookMark | eNqNkl2PEyEUholZ43ZX_4LhxkQvpvI1zIyJJpum213TrKZbY-INoQyTUulQgX79e5lttyZelRvg8LzvAc65AhetazUAEKM-TuPjoo8pzzNSEt4nCJM-IqSk_d0L0DsdXIAeqnKalbhil-AqhAVCuMgpegUuSYfnnPVAO7mt4He31b5ZW7uHj9Es11ZGHeDItbJ20bvV3LTwUSuvo3EtTJs413C41Z_gcGNq3SoNG-ehTJAMSWXhdO51mDtbQ9ekaBtMNBsT96_By0baoN8c52vw43Y4Hdxl42-j-8HNOFN5gWhWU81VzRGXpMJcKcU1U1yll-AZY6hkMueIIYmqRDJZUYVndFYjKjXOGavoNfhw8J1LK1beLKXfCyeNuLsZiy6GMCYVx-UGJ_b9gV1592etQxRLE5S2VrbarYPACDOMKCXFGSgqS1JWLE_o2yO6ni11fbrE89cn4N0RkEFJ23jZKhP-cXnJclJ0Rl8OnPIuBK8boUyUXSWil8amnKLrCbEQXelFV3rR9YR46gmxSwblfwbPOc6Qfj5It8bq_dk68fVh2K2SPjvoTYh6d9JL_1vwgha5-PkwEngy-TWaTqkY0L-uLtqv |
CitedBy_id | crossref_primary_10_1095_biolreprod_116_144998 crossref_primary_10_1210_endocr_bqad102 crossref_primary_10_1016_j_neuropharm_2017_03_012 crossref_primary_10_1016_j_npep_2017_07_005 crossref_primary_10_1038_s41598_018_24381_4 crossref_primary_10_1093_biolre_ioy145 crossref_primary_10_1111_jne_12137 crossref_primary_10_1016_j_peptides_2012_08_019 crossref_primary_10_1016_j_pharmthera_2016_02_005 crossref_primary_10_1016_j_cub_2014_05_024 crossref_primary_10_1177_0748730414532423 crossref_primary_10_1016_j_anireprosci_2015_11_018 crossref_primary_10_1210_en_2015_1635 crossref_primary_10_1007_s44338_024_00037_8 crossref_primary_10_3389_fphys_2021_630796 crossref_primary_10_1016_j_jevs_2017_07_013 crossref_primary_10_1016_j_domaniend_2012_04_001 crossref_primary_10_1016_j_npep_2016_05_004 crossref_primary_10_1016_j_anireprosci_2015_05_013 crossref_primary_10_1016_j_theriogenology_2016_04_045 crossref_primary_10_1016_j_jchromb_2019_121875 crossref_primary_10_3389_fendo_2021_781543 crossref_primary_10_1111_jne_12407 crossref_primary_10_1021_jm5019675 crossref_primary_10_1523_JNEUROSCI_2200_14_2014 crossref_primary_10_1095_biolreprod_115_128777 crossref_primary_10_1210_en_2014_1845 crossref_primary_10_1016_j_mehy_2019_05_016 crossref_primary_10_1002_mrd_22830 crossref_primary_10_1095_biolreprod_113_112185 crossref_primary_10_1111_jne_13124 crossref_primary_10_1002_cne_24659 crossref_primary_10_3389_fendo_2015_00189 crossref_primary_10_1210_en_2015_1854 crossref_primary_10_1210_en_2016_1902 crossref_primary_10_3389_fendo_2016_00036 crossref_primary_10_1210_en_2015_1532 crossref_primary_10_1016_j_mce_2016_06_026 crossref_primary_10_1016_j_yfrne_2018_03_005 crossref_primary_10_1210_en_2014_1517 crossref_primary_10_1590_1984_3143_ar2021_0063 crossref_primary_10_1016_j_domaniend_2020_106446 crossref_primary_10_1111_jne_12225 crossref_primary_10_1021_acs_jmedchem_1c00256 crossref_primary_10_1016_j_peptides_2013_07_003 crossref_primary_10_1530_REP_18_0127 crossref_primary_10_1111_nmo_13848 crossref_primary_10_1007_s11033_022_07447_5 crossref_primary_10_1210_en_2014_1030 crossref_primary_10_1016_j_archoralbio_2014_11_005 crossref_primary_10_1210_en_2012_1088 crossref_primary_10_3803_EnM_2016_31_2_193 |
Cites_doi | 10.1152/ajpendo.00108.2010 10.1021/ml1002053 10.1210/en.2009-0775 10.1095/biolreprod48.1.197 10.1677/joe.0.1820033 10.1016/j.ygcen.2008.10.002 10.1016/j.bbrc.2004.05.185 10.1016/j.domaniend.2009.02.001 10.1677/JOE-08-0197 10.1210/en.2011-1622 10.1111/j.1365-2826.2010.02018.x 10.1073/pnas.0409822102 10.1210/en.2011-1110 10.1095/biolreprod46.6.1130 10.1210/en.2008-1359 10.1210/en.2009-1259 10.1530/jrf.0.0730173 10.1038/35079135 10.1016/S0014-2999(02)02224-0 10.1677/JOE-07-0504 10.1111/j.1365-2826.1990.tb00846.x 10.1210/en.2011-1228 10.1016/j.neuropharm.2006.07.034 10.1006/bbrc.2000.3350 10.1530/REP-07-0502 10.1210/en.2004-0836 10.1016/0753-3322(93)90299-Z 10.1016/j.domaniend.2010.01.001 10.1016/j.neuroscience.2010.06.058 10.1074/jbc.M105308200 10.1073/pnas.0409330102 10.1111/j.1365-2826.2008.01784.x 10.1073/pnas.0511003103 10.1016/j.yhbeh.2006.06.004 10.1038/35036326 10.1210/en.2007-0554 10.1073/pnas.0502090103 10.1210/en.138.11.5039 10.1002/mas.20031 10.1074/jbc.M104847200 10.1210/jc.2005-1468 10.1210/en.2008-0575 10.1113/expphysiol.2004.027169 10.1016/j.anireprosci.2009.05.017 10.1210/en.2008-1698 10.1210/en.2008-1287 10.1210/endo.136.8.7628356 |
ContentType | Journal Article |
Copyright | 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd 2015 INIST-CNRS 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC |
DOI | 10.1111/j.1365-2826.2012.02283.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1365-2826 |
EndPage | 736 |
ExternalDocumentID | oai_HAL_hal_01129618v1 22283564 25845275 10_1111_j_1365_2826_2012_02283_x JNE2283 ark_67375_WNG_1RRZGTT3_C |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FYBCS FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AEFGJ AETEA AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 1XC |
ID | FETCH-LOGICAL-c5703-d3e6cd606a2916ccc6e4c6c1941b44084a56040a09d3e4a93c1b3bd03ae154493 |
IEDL.DBID | DR2 |
ISSN | 0953-8194 1365-2826 |
IngestDate | Wed May 21 12:41:39 EDT 2025 Fri Jul 11 01:08:25 EDT 2025 Fri Jul 11 09:54:57 EDT 2025 Thu Apr 03 07:05:00 EDT 2025 Mon Jul 21 09:14:39 EDT 2025 Tue Jul 01 02:01:30 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 Wed Oct 30 09:49:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | RF9 Secretion RFRP3 Gonadotropin RH Hypothalamic hormone Vertebrata Ewe Sensitivity Mammalia Adenohypophyseal hormone Animal Luteinizing hormone Sheep Artiodactyla Hormone releasing factor GnRH LH Ungulata GPR147 rf9 rfrp3 gpr147 anoestrus lh gnrh sheep |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5703-d3e6cd606a2916ccc6e4c6c1941b44084a56040a09d3e4a93c1b3bd03ae154493 |
Notes | istex:782CAB2CE08BF141C73B9AA60A801CAAB27A115C ArticleID:JNE2283 ark:/67375/WNG-1RRZGTT3-C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 |
ORCID | 0000-0003-3472-2477 |
PMID | 22283564 |
PQID | 1008828945 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_01129618v1 proquest_miscellaneous_1014103327 proquest_miscellaneous_1008828945 pubmed_primary_22283564 pascalfrancis_primary_25845275 crossref_citationtrail_10_1111_j_1365_2826_2012_02283_x crossref_primary_10_1111_j_1365_2826_2012_02283_x wiley_primary_10_1111_j_1365_2826_2012_02283_x_JNE2283 istex_primary_ark_67375_WNG_1RRZGTT3_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2012 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Journal of neuroendocrinology |
PublicationTitleAlternate | J Neuroendocrinol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley |
References | Kadokawa H, Matsui M, Hayashi K, Matsunaga N, Kawashima C, Shimizu T, Kida K, Miyamoto A. Peripheral administration of kisspeptin-10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers. J Endocrinol 2008; 196: 331-334. Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148: 5258-5267. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276: 34631-34636. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005; 146: 156-163. Dockray GJ. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229-235. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 2000; 275: 661-667. Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications. Endocrinology 2010; 151: 1902-1913. Deghenghi R, Boutignon F, Wuthrich P, Lenaerts V. Antarelix (EP 24332) a novel water soluble LHRH antagonist. Biomed Pharmacother 1993; 47: 107-110. Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav 2006; 50: 655-666. Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur J Pharmacol 2002; 451: 245-256. Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-2415. Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 2009; 150: 1834-1840. Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008; 135: 879-887. Anderson GM, Augustine R, Rizwan MZ, Cornes P. RF-amide-related peptide-3 (RFRP-3) regulates LH secretion exclusively via a GnRH-dependent mechanism in the rat. Soc Neurosci Ann Meet 2011; Poster 713.12. Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 2010; 22: 716-727. Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2010; 299: E39-E46. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005; 102: 1761-1766. Ancel C, Bentsen AH, Sébert M-E, Tena-Sempere M, Mikkelsen JD, Simonneaux V. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule. Endocrinology 2012; 153: 1-12. Oishi S, Misu R, Tomita K, Setsuda S, Masuda R, Ohno H, Naniwa Y, Ieda N, Inoue N, Ohkura S, Uenoyama Y, Tsukamura H, Maeda K, Hirasawa A, Tsujimoto G, Fujii N. Activation of neuropeptide FF receprot by kisspeptin receptor ligand. ACS Med Chem Lett 2011; 2: 53-57. Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150: 2813-2821. Jansen HT, Lubbers LS, Macchia E, DeGroot LJ, Lehman MN. Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin-releasing hormone and other identified neurons. Endocrinology 1997; 138: 5039-5047. Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL Jr, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 2001; 276: 36961-36969. Gouarderes C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology 2007; 52: 376-386. Goldsmith PC, Thind KK, Song T, Kim EJ, Boggant JE. Location of the neuroendocrine gonadotropin-releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining. J Neuroendocrinol 1990; 2: 157-168. Tsutsui K, Osugi T. Evolutionary origin and divergence of GnIH and its homologous peptides. Gen Comp Endocrinol 2009; 161: 30-33. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411: 613-617. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320: 383-388. Osugi T, Ukena K, Bentley GE, O'Brien S, Moore IT, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments. J Endocrinol 2004; 182: 33-42. Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 2008; 199: 105-112. Montgomery GW, Martin GB, Pelletier J. Changes in pulsatile LH secretion after ovariectomy in Ile-de-France ewes in two seasons. J Reprod Fertil 1985; 73: 173-183. Lyubimov Y, Engstrom M, Wurster S, Savola JM, Korpi ER, Panula P. Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170: 117-122. Skinner DC, Malpaux B, Delaleu B, Caraty A. Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge. Endocrinology 1995; 136: 3230-3237. Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 2011; 152: 3832-3841. Rizwan MZ, Porteous R, Herbison AE, Anderson GM. Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 2009; 150: 1413-1420. Sebert ME, Lomet D, Said SB, Monget P, Briant C, Scaramuzzi RJ, Caraty A. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest Anim Endocrinol 2010; 38: 289-298. Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 2009; 150: 5549-5556. Dardente H, Birnie M, Lincoln GA, Hazlerigg DG. RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J Neuroendocrinol 2008; 20: 1252-1259. Rhim TJ, Kuehl D, Jackson GL. Seasonal changes in the relationships between secretion of gonadotropin-releasing hormone, luteinizing hormone, and testosterone in the ram. Biol Reprod 1993; 48: 197-204. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102: 2129-2134. Pelletier J, Kann G, Dolais J, Rosselin G. [Radio-immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]. C R Acad Sci Hebd Seances Acad Sci D 1968; 266: 2352-2354. Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci USA 2006; 103: 466-471. Ukena K, Tsutsui K. A new 1993; 48 2004; 320 1993; 47 2007; 148 1997; 138 2010; 38 2006; 50 2011; 2 1968; 266 2011 2002; 451 2005; 90 2004; 89 2004; 182 2009; 150 2000; 2 2008; 149 2000; 275 1995; 136 2007; 52 2011; 152 2005; 24 2001; 276 2010; 22 1990; 2 2009; 36 2012; 153 2010; 118 2005; 102 2005; 146 2010; 299 2009; 161 1985; 73 1992; 46 2010; 151 2010; 170 2008; 135 2008; 20 2008; 199 2008; 196 2001; 411 2006; 103 e_1_2_6_30_2 Anderson GM (e_1_2_6_42_2) 2011 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 Pelletier J (e_1_2_6_33_2) 1968; 266 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – reference: Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 2010; 22: 716-727. – reference: Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005; 90: 6609-6615. – reference: Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL Jr, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 2001; 276: 36961-36969. – reference: Jansen HT, Lubbers LS, Macchia E, DeGroot LJ, Lehman MN. Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin-releasing hormone and other identified neurons. Endocrinology 1997; 138: 5039-5047. – reference: Skinner DC, Malpaux B, Delaleu B, Caraty A. Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge. Endocrinology 1995; 136: 3230-3237. – reference: Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. Mass Spectrom Rev 2005; 24: 469-486. – reference: Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ, Tsutsui K. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 2012; 153: 373-385. – reference: Clarke IJ, Sari IP, Qi Y, Smith JT, Parkington HC, Ubuka T, Iqbal J, Li Q, Tilbrook A, Morgan K, Pawson AJ, Tsutsui K, Millar RP, Bentley GE. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 2008; 149: 5811-5821. – reference: Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 2000; 275: 661-667. – reference: Rizwan MZ, Porteous R, Herbison AE, Anderson GM. Cells expressing RFamide-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 2009; 150: 1413-1420. – reference: Ancel C, Bentsen AH, Sébert M-E, Tena-Sempere M, Mikkelsen JD, Simonneaux V. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule. Endocrinology 2012; 153: 1-12. – reference: Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2000; 2: 703-708. – reference: Hashizume T, Saito H, Sawada T, Yaegashi T, Ezzat AA, Sawai K, Yamashita T. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci 2010; 118: 37-41. – reference: Barrell GK, Moenter SM, Caraty A, Karsch FJ. Seasonal changes of gonadotropin-releasing hormone secretion in the ewe. Biol Reprod 1992; 46: 1130-1135. – reference: Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008; 135: 879-887. – reference: Dardente H, Birnie M, Lincoln GA, Hazlerigg DG. RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J Neuroendocrinol 2008; 20: 1252-1259. – reference: Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102: 2129-2134. – reference: Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150: 2813-2821. – reference: Kadokawa H, Matsui M, Hayashi K, Matsunaga N, Kawashima C, Shimizu T, Kida K, Miyamoto A. Peripheral administration of kisspeptin-10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers. J Endocrinol 2008; 196: 331-334. – reference: Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D, Matifas A, Mollereau C, Laurent P, Parmentier M, Kieffer BL, Bourguignon JJ, Simonnet G. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci USA 2006; 103: 466-471. – reference: Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005; 102: 1761-1766. – reference: Goldsmith PC, Thind KK, Song T, Kim EJ, Boggant JE. Location of the neuroendocrine gonadotropin-releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining. J Neuroendocrinol 1990; 2: 157-168. – reference: Tsutsui K, Osugi T. Evolutionary origin and divergence of GnIH and its homologous peptides. Gen Comp Endocrinol 2009; 161: 30-33. – reference: Osugi T, Ukena K, Bentley GE, O'Brien S, Moore IT, Wingfield JC, Tsutsui K. Gonadotropin-inhibitory hormone in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii): cDNA identification, transcript localization and functional effects in laboratory and field experiments. J Endocrinol 2004; 182: 33-42. – reference: Lyubimov Y, Engstrom M, Wurster S, Savola JM, Korpi ER, Panula P. Human kisspeptins activate neuropeptide FF2 receptor. Neuroscience 2010; 170: 117-122. – reference: Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 2009; 150: 5549-5556. – reference: Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320: 383-388. – reference: Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005; 146: 156-163. – reference: Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM. Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur J Pharmacol 2002; 451: 245-256. – reference: Sebert ME, Lomet D, Said SB, Monget P, Briant C, Scaramuzzi RJ, Caraty A. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest Anim Endocrinol 2010; 38: 289-298. – reference: Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K. Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 2008; 199: 105-112. – reference: Gouarderes C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology 2007; 52: 376-386. – reference: Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am J Physiol Endocrinol Metab 2010; 299: E39-E46. – reference: Oishi S, Misu R, Tomita K, Setsuda S, Masuda R, Ohno H, Naniwa Y, Ieda N, Inoue N, Ohkura S, Uenoyama Y, Tsukamura H, Maeda K, Hirasawa A, Tsujimoto G, Fujii N. Activation of neuropeptide FF receprot by kisspeptin receptor ligand. ACS Med Chem Lett 2011; 2: 53-57. – reference: Herde MK, Geist K, Campbell RE, Herbison AE. Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood-brain barrier. Endocrinology 2011; 152: 3832-3841. – reference: Montgomery GW, Martin GB, Pelletier J. Changes in pulsatile LH secretion after ovariectomy in Ile-de-France ewes in two seasons. J Reprod Fertil 1985; 73: 173-183. – reference: Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001; 411: 613-617. – reference: Kadokawa H, Shibata M, Tanaka Y, Kojima T, Matsumoto K, Oshima K, Yamamoto N. Bovine C-terminal octapeptide of RFamide-related peptide-3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines. Domest Anim Endocrinol 2009; 36: 219-224. – reference: Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276: 34631-34636. – reference: Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenrohr M, Pinilla L, van Noort PI, Tena-Sempere M. Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications. Endocrinology 2010; 151: 1902-1913. – reference: Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148: 5258-5267. – reference: Deghenghi R, Boutignon F, Wuthrich P, Lenaerts V. Antarelix (EP 24332) a novel water soluble LHRH antagonist. Biomed Pharmacother 1993; 47: 107-110. – reference: Pelletier J, Kann G, Dolais J, Rosselin G. [Radio-immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes]. C R Acad Sci Hebd Seances Acad Sci D 1968; 266: 2352-2354. – reference: Dockray GJ. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89: 229-235. – reference: Anderson GM, Augustine R, Rizwan MZ, Cornes P. RF-amide-related peptide-3 (RFRP-3) regulates LH secretion exclusively via a GnRH-dependent mechanism in the rat. Soc Neurosci Ann Meet 2011; Poster 713.12. – reference: Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 2009; 150: 1834-1840. – reference: Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav 2006; 50: 655-666. – reference: Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-2415. – reference: Rhim TJ, Kuehl D, Jackson GL. Seasonal changes in the relationships between secretion of gonadotropin-releasing hormone, luteinizing hormone, and testosterone in the ram. Biol Reprod 1993; 48: 197-204. – volume: 148 start-page: 5258 year: 2007 end-page: 5267 article-title: Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes publication-title: Endocrinology – volume: 411 start-page: 613 year: 2001 end-page: 617 article-title: Metastasis suppressor gene KiSS‐1 encodes peptide ligand of a G‐protein‐coupled receptor publication-title: Nature – volume: 153 start-page: 1 year: 2012 end-page: 12 article-title: Stimulatory effect of RFRP‐3 on the gonadotrophic axis in the male syrian hamster: the exception proves the rule publication-title: Endocrinology – volume: 36 start-page: 219 year: 2009 end-page: 224 article-title: Bovine C‐terminal octapeptide of RFamide‐related peptide‐3 suppresses luteinizing hormone (LH) secretion from the pituitary as well as pulsatile LH secretion in bovines publication-title: Domest Anim Endocrinol – volume: 320 start-page: 383 year: 2004 end-page: 388 article-title: Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat publication-title: Biochem Biophys Res Commun – volume: 20 start-page: 1252 year: 2008 end-page: 1259 article-title: RFamide‐related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod publication-title: J Neuroendocrinol – volume: 199 start-page: 105 year: 2008 end-page: 112 article-title: Hypophysiotropic role of RFamide‐related peptide‐3 in the inhibition of LH secretion in female rats publication-title: J Endocrinol – volume: 152 start-page: 3832 year: 2011 end-page: 3841 article-title: Gonadotropin‐releasing hormone neurons extend complex highly branched dendritic trees outside the blood‐brain barrier publication-title: Endocrinology – volume: 276 start-page: 36961 year: 2001 end-page: 36969 article-title: Identification and characterization of novel mammalian neuropeptide FF‐like peptides that attenuate morphine‐induced antinociception publication-title: J Biol Chem – volume: 150 start-page: 5549 year: 2009 end-page: 5556 article-title: Effect of RF‐amide‐related peptide‐3 on luteinizing hormone and follicle‐stimulating hormone synthesis and secretion in ovine pituitary gonadotropes publication-title: Endocrinology – volume: 102 start-page: 2129 year: 2005 end-page: 2134 article-title: Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates publication-title: Proc Natl Acad Sci USA – volume: 47 start-page: 107 year: 1993 end-page: 110 article-title: Antarelix (EP 24332) a novel water soluble LHRH antagonist publication-title: Biomed Pharmacother – volume: 2 start-page: 157 year: 1990 end-page: 168 article-title: Location of the neuroendocrine gonadotropin‐releasing hormone neurons in the monkey hypothalamus by retrograde tracing and immunostaining publication-title: J Neuroendocrinol – volume: 146 start-page: 156 year: 2005 end-page: 163 article-title: Characterization of the potent luteinizing hormone‐releasing activity of KiSS‐1 peptide, the natural ligand of GPR54 publication-title: Endocrinology – volume: 24 start-page: 469 year: 2005 end-page: 486 article-title: A new member of the hypothalamic RF‐amide peptide family, LPXRF‐amide peptides: structure, localization, and function publication-title: Mass Spectrom Rev – volume: 150 start-page: 1413 year: 2009 end-page: 1420 article-title: Cells expressing RFamide‐related peptide‐1/3, the mammalian gonadotropin‐inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat publication-title: Endocrinology – volume: 266 start-page: 2352 year: 1968 end-page: 2354 article-title: [Radio‐immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes] publication-title: C R Acad Sci Hebd Seances Acad Sci D – volume: 151 start-page: 1902 year: 2010 end-page: 1913 article-title: Characterization of the potent gonadotropin‐releasing activity of RF9, a selective antagonist of RF‐amide‐related peptides and neuropeptide FF receptors: physiological and pharmacological implications publication-title: Endocrinology – volume: 153 start-page: 373 year: 2012 end-page: 385 article-title: Identification, expression, and physiological functions of Siberian hamster gonadotropin‐inhibitory hormone publication-title: Endocrinology – volume: 2 start-page: 53 year: 2011 end-page: 57 article-title: Activation of neuropeptide FF receprot by kisspeptin receptor ligand publication-title: ACS Med Chem Lett – volume: 89 start-page: 229 year: 2004 end-page: 235 article-title: The expanding family of ‐RFamide peptides and their effects on feeding behaviour publication-title: Exp Physiol – volume: 299 start-page: E39 year: 2010 end-page: E46 article-title: Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies publication-title: Am J Physiol Endocrinol Metab – volume: 38 start-page: 289 year: 2010 end-page: 298 article-title: Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol publication-title: Domest Anim Endocrinol – volume: 150 start-page: 2813 year: 2009 end-page: 2821 article-title: Biological and anatomical evidence for kisspeptin regulation of the hypothalamic‐pituitary‐gonadal axis of estrous horse mares publication-title: Endocrinology – volume: 276 start-page: 34631 year: 2001 end-page: 34636 article-title: The metastasis suppressor gene KiSS‐1 encodes kisspeptins, the natural ligands of the orphan G protein‐coupled receptor GPR54 publication-title: J Biol Chem – volume: 150 start-page: 1834 year: 2009 end-page: 1840 article-title: Central and peripheral effects of RFamide‐related peptide‐3 on luteinizing hormone and prolactin secretion in rats publication-title: Endocrinology – volume: 73 start-page: 173 year: 1985 end-page: 183 article-title: Changes in pulsatile LH secretion after ovariectomy in Ile‐de‐France ewes in two seasons publication-title: J Reprod Fertil – volume: 275 start-page: 661 year: 2000 end-page: 667 article-title: A novel avian hypothalamic peptide inhibiting gonadotropin release publication-title: Biochem Biophys Res Commun – volume: 2 start-page: 703 year: 2000 end-page: 708 article-title: New neuropeptides containing carboxy‐terminal RFamide and their receptor in mammals publication-title: Nat Cell Biol – volume: 46 start-page: 1130 year: 1992 end-page: 1135 article-title: Seasonal changes of gonadotropin‐releasing hormone secretion in the ewe publication-title: Biol Reprod – volume: 451 start-page: 245 year: 2002 end-page: 256 article-title: Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists publication-title: Eur J Pharmacol – volume: 161 start-page: 30 year: 2009 end-page: 33 article-title: Evolutionary origin and divergence of GnIH and its homologous peptides publication-title: Gen Comp Endocrinol – volume: 52 start-page: 376 year: 2007 end-page: 386 article-title: Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide‐related peptides on stimulation of [35S]GTPgammaS binding publication-title: Neuropharmacology – volume: 50 start-page: 655 year: 2006 end-page: 666 article-title: Driving reproduction: RFamide peptides behind the wheel publication-title: Horm Behav – volume: 103 start-page: 466 year: 2006 end-page: 471 article-title: RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid‐induced tolerance associated with hyperalgesia publication-title: Proc Natl Acad Sci USA – year: 2011 article-title: RF‐amide‐related peptide‐3 (RFRP‐3) regulates LH secretion exclusively via a GnRH‐dependent mechanism in the rat publication-title: Soc Neurosci Ann Meet – volume: 182 start-page: 33 year: 2004 end-page: 42 article-title: Gonadotropin‐inhibitory hormone in Gambel’s white‐crowned sparrow ( ): cDNA identification, transcript localization and functional effects in laboratory and field experiments publication-title: J Endocrinol – volume: 102 start-page: 1761 year: 2005 end-page: 1766 article-title: Kisspeptin directly stimulates gonadotropin‐releasing hormone release via G protein‐coupled receptor 54 publication-title: Proc Natl Acad Sci USA – volume: 135 start-page: 879 year: 2008 end-page: 887 article-title: Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts publication-title: Reproduction – volume: 118 start-page: 37 year: 2010 end-page: 41 article-title: Characteristics of stimulation of gonadotropin secretion by kisspeptin‐10 in female goats publication-title: Anim Reprod Sci – volume: 90 start-page: 6609 year: 2005 end-page: 6615 article-title: Kisspeptin‐54 stimulates the hypothalamic‐pituitary gonadal axis in human males publication-title: J Clin Endocrinol Metab – volume: 149 start-page: 5811 year: 2008 end-page: 5821 article-title: Potent action of RFamide‐related peptide‐3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion publication-title: Endocrinology – volume: 170 start-page: 117 year: 2010 end-page: 122 article-title: Human kisspeptins activate neuropeptide FF2 receptor publication-title: Neuroscience – volume: 48 start-page: 197 year: 1993 end-page: 204 article-title: Seasonal changes in the relationships between secretion of gonadotropin‐releasing hormone, luteinizing hormone, and testosterone in the ram publication-title: Biol Reprod – volume: 138 start-page: 5039 year: 1997 end-page: 5047 article-title: Thyroid hormone receptor (alpha) distribution in hamster and sheep brain: colocalization in gonadotropin‐releasing hormone and other identified neurons publication-title: Endocrinology – volume: 22 start-page: 716 year: 2010 end-page: 727 article-title: Discovery and evolutionary history of gonadotrophin‐inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction publication-title: J Neuroendocrinol – volume: 196 start-page: 331 year: 2008 end-page: 334 article-title: Peripheral administration of kisspeptin‐10 increases plasma concentrations of GH as well as LH in prepubertal Holstein heifers publication-title: J Endocrinol – volume: 103 start-page: 2410 year: 2006 end-page: 2415 article-title: Identification and characterization of a gonadotropin‐inhibitory system in the brains of mammals publication-title: Proc Natl Acad Sci USA – volume: 136 start-page: 3230 year: 1995 end-page: 3237 article-title: Luteinizing hormone (LH)‐releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge publication-title: Endocrinology – ident: e_1_2_6_26_2 doi: 10.1152/ajpendo.00108.2010 – ident: e_1_2_6_49_2 doi: 10.1021/ml1002053 – ident: e_1_2_6_41_2 doi: 10.1210/en.2009-0775 – ident: e_1_2_6_35_2 doi: 10.1095/biolreprod48.1.197 – ident: e_1_2_6_17_2 doi: 10.1677/joe.0.1820033 – ident: e_1_2_6_16_2 doi: 10.1016/j.ygcen.2008.10.002 – volume: 266 start-page: 2352 year: 1968 ident: e_1_2_6_33_2 article-title: [Radio‐immunologic determination of plasma lutenizing hormone in sheep. Comparison with the biologic determination of LH by the diminution of ovarian ascorbic acid, and example of the application to measure of the blood LH in ewes] publication-title: C R Acad Sci Hebd Seances Acad Sci D – ident: e_1_2_6_5_2 doi: 10.1016/j.bbrc.2004.05.185 – ident: e_1_2_6_25_2 doi: 10.1016/j.domaniend.2009.02.001 – ident: e_1_2_6_27_2 doi: 10.1677/JOE-08-0197 – ident: e_1_2_6_40_2 doi: 10.1210/en.2011-1622 – ident: e_1_2_6_2_2 doi: 10.1111/j.1365-2826.2010.02018.x – ident: e_1_2_6_7_2 doi: 10.1073/pnas.0409822102 – ident: e_1_2_6_23_2 doi: 10.1210/en.2011-1110 – ident: e_1_2_6_36_2 doi: 10.1095/biolreprod46.6.1130 – ident: e_1_2_6_28_2 doi: 10.1210/en.2008-1359 – ident: e_1_2_6_30_2 doi: 10.1210/en.2009-1259 – ident: e_1_2_6_34_2 doi: 10.1530/jrf.0.0730173 – ident: e_1_2_6_38_2 doi: 10.1038/35079135 – year: 2011 ident: e_1_2_6_42_2 article-title: RF‐amide‐related peptide‐3 (RFRP‐3) regulates LH secretion exclusively via a GnRH‐dependent mechanism in the rat publication-title: Soc Neurosci Ann Meet – ident: e_1_2_6_47_2 doi: 10.1016/S0014-2999(02)02224-0 – ident: e_1_2_6_10_2 doi: 10.1677/JOE-07-0504 – ident: e_1_2_6_43_2 doi: 10.1111/j.1365-2826.1990.tb00846.x – ident: e_1_2_6_45_2 doi: 10.1210/en.2011-1228 – ident: e_1_2_6_48_2 doi: 10.1016/j.neuropharm.2006.07.034 – ident: e_1_2_6_15_2 doi: 10.1006/bbrc.2000.3350 – ident: e_1_2_6_9_2 doi: 10.1530/REP-07-0502 – ident: e_1_2_6_6_2 doi: 10.1210/en.2004-0836 – ident: e_1_2_6_31_2 doi: 10.1016/0753-3322(93)90299-Z – ident: e_1_2_6_13_2 doi: 10.1016/j.domaniend.2010.01.001 – ident: e_1_2_6_50_2 doi: 10.1016/j.neuroscience.2010.06.058 – ident: e_1_2_6_46_2 doi: 10.1074/jbc.M105308200 – ident: e_1_2_6_4_2 doi: 10.1073/pnas.0409330102 – ident: e_1_2_6_20_2 doi: 10.1111/j.1365-2826.2008.01784.x – ident: e_1_2_6_21_2 doi: 10.1073/pnas.0511003103 – ident: e_1_2_6_39_2 doi: 10.1016/j.yhbeh.2006.06.004 – ident: e_1_2_6_14_2 doi: 10.1038/35036326 – ident: e_1_2_6_37_2 doi: 10.1210/en.2007-0554 – ident: e_1_2_6_29_2 doi: 10.1073/pnas.0502090103 – ident: e_1_2_6_44_2 doi: 10.1210/en.138.11.5039 – ident: e_1_2_6_18_2 doi: 10.1002/mas.20031 – ident: e_1_2_6_3_2 doi: 10.1074/jbc.M104847200 – ident: e_1_2_6_8_2 doi: 10.1210/jc.2005-1468 – ident: e_1_2_6_24_2 doi: 10.1210/en.2008-0575 – ident: e_1_2_6_22_2 doi: 10.1113/expphysiol.2004.027169 – ident: e_1_2_6_12_2 doi: 10.1016/j.anireprosci.2009.05.017 – ident: e_1_2_6_11_2 doi: 10.1210/en.2008-1698 – ident: e_1_2_6_19_2 doi: 10.1210/en.2008-1287 – ident: e_1_2_6_32_2 doi: 10.1210/endo.136.8.7628356 |
SSID | ssj0017530 |
Score | 2.287447 |
Snippet | GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic‐pituitary axis control. The role of this system would be to inhibit... GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit... |
SourceID | hal proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 725 |
SubjectTerms | Adamantane - administration & dosage Adamantane - analogs & derivatives Adamantane - pharmacokinetics Adamantane - pharmacology Animals Biological and medical sciences Blood-brain barrier Central Nervous System - drug effects Central Nervous System - metabolism Cerebrospinal fluid Data processing Dipeptides - administration & dosage Dipeptides - pharmacokinetics Dipeptides - pharmacology Dose-Response Relationship, Drug Drug Resistance - drug effects Drug Resistance - physiology Female Fundamental and applied biological sciences. Psychology GnRH Gonadotropin-releasing hormone Gonadotropins - secretion GPR147 Half-Life Hormones Hypothalamus Injections, Intravenous Injections, Intraventricular Life Sciences Luteinizing hormone Luteinizing Hormone - secretion Neurons and Cognition Peripheral blood Pharmacokinetics Pituitary Pituitary (anterior) Receptors, Neuropeptide - antagonists & inhibitors Reproduction Reproduction - drug effects Reproduction - physiology RF9 RFRP3 Seasons Secretion Sheep Up-Regulation - drug effects Vertebrates: endocrinology |
Title | RF9 Powerfully Stimulates Gonadotrophin Secretion in the Ewe: Evidence for a Seasonal Threshold of Sensitivity |
URI | https://api.istex.fr/ark:/67375/WNG-1RRZGTT3-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2826.2012.02283.x https://www.ncbi.nlm.nih.gov/pubmed/22283564 https://www.proquest.com/docview/1008828945 https://www.proquest.com/docview/1014103327 https://hal.science/hal-01129618 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZge-GF24CFS2UQ2lsqJ3ZuvHWjF01Qoa4TEy-W7TjaVJZOTQsbv55znDZb0IQmxFvr2qly8jn-jvPlO4S8VwLSjixIfaEj5os0ML5K48w3htkgSQBDDF9w_jyOR8fi8CQ6Weuf8F2Y2h-i2XDDmeHu1zjBla7ak9wptIAfo0Ir7Donly7ySfwB-dGkcZJCP0pW2-5xHxZB0Rb13Hqg1kp1_xR1ktsY-kvUT6oKQljUtS9uI6dtrusWq8EjMtucZq1RmXVXS901v_5wgPw_cXhMHq45Le3VIHxC7tnyKdnplZDPn1_RPepUpm77foeUk0FGv2BpNtz4v6JHy7NzrCBmKzqEpABy5MX84vSspEfIZxE1FL4AS6X9n_YD3RRBpcC1qYJOyqUSdAqQrPBJGp0X0FqiEg2rYjwjx4P-9GDkr2s--Aa9wPyc29jkkFWpEIirMSa2wsQGrligsTi2UEDRBFMsg55CZdwEmuuccWXRVyjjz8lWOS_tLqFhytKkgINwZkSQ5TrLdJFqUeics7QQHkk211eatSE61uX4Lm8kRhBaiaGVGFrpQisvPRI0Iy9qU5A7jHkHEGq6o6v3qPdJYhtDzhsH6Y_AI3sOYU03tZih8i6J5NfxUAaTybfhdMrlgUc6LQg2A0IglFGYRB55u8GkhBsGPgVSpZ2vKjSpTjHNFn_tg_JfzsPEIy9qQF__A55PFEP4YgfLO0dAHo77-Onlvw58RR5gcy03fU22louVfQOUcKk7ZLu3_3F_0HGT_jcu6077 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPcCFV6GERzEI9ZaVHTsvbqtqH5TtCm1TUXGxbCdRq7bZah_Q8uuZcXYDQRWqELfdaJwok3HyjfPl-wh5ryW0HSlPfGlC5suEW18nUepbywoex1BDDD9wPhhHwyO5fxwer-yA8FuYWh-iWXDDmeHu1zjBcUG6PcsdRQsAMlK0go6TcukAoNxEg2_XX00aLSlUpGS18J7w4TEo27SeG_fUelbdPUGm5CYm_woZlHoOSSxr94ub4Gkb7brHVf8hOV-faM1SOessF6Zjf_yhAfmfMvGIPFjBWtqt6_AxuVNUT8hWt4KW_uKa7lJHNHUr-FukmvRT-hnd2fAA1_RwcXqBJmLFnA6gL4A2eTa9PDmt6CFCWiwcCn8AqNLe9-IDXfugUoDbVEOQdt0EzaAq5_gyjU5L2FohGQ2NMZ6So34v2xv6K9sH36IcmJ-LIrI5NFY6AOxqrY0KaSMLl4wb9MeWGlCaZJqlECl1Kiw3wuRM6AKlhVLxjGxU06p4TmiQsCQuYSeCWcnT3KSpKRMjS5MLlpTSI_H6Aiu70kRHa45z9VtvBKlVmFqFqVUuterKI7wZeVnrgtxizDuooSYchb2H3ZHCbQxhb8STb9wju67EmjA9O0PyXRyqL-OB4pPJ10GWCbXnkZ1WDTYDAsCUYRCHHnm7LkoF9wx8EaSrYrqco051gp22_GsMMoCFCGKPbNcV_esIeD5hBOmLXF3eOgNqf9zDXy_-deAbcm-YHYzU6OP400tyH0Nq9ukrsrGYLYvXgBAXZsfN_J-M61Gk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgkxAvDBiXDBgGob2lcmLnxlu19cIY1dR1YuLFsh1Hm8rSqhfY-PWc47SBoAlNiLcmOk6Vk8_Jd5wv3yHknRJQdmRB6gsdMV-kgfFVGme-McwGSQIYYviB86dB3D8Vh2fR2Ur_hN_CVP4Q9YIbzgx3v8YJPs2L5iR3Ci3gx6jQClvOyaUFfHJTxCxFhB8MayspNKRkle8e9-EpKJqqnhuP1HhU3T1HoeQm5v4KBZRqDjksquYXN7HTJtl1T6vuFhmvz7MSqYxby4VumR9_WED-n0Q8JA9WpJa2KxQ-Inds-Zhst0so6C-v6R51MlO3fr9NymE3o8fYmw1X_q_pyeLiEluI2TntQVUARfJsMj2_KOkJElqEDYUNoKm0892-p-suqBTINlUQpFwtQUeAyTm-SqOTAvaWKEXDthhPyGm3M9rv-6umD75BMzA_5zY2OZRVKgTmaoyJrTCxgSsWaOyOLRRwNMEUyyBSqIybQHOdM64sGgtl_CnZKCelfU5omLI0KeAgnBkRZLnOMl2kWhQ65ywthEeS9fWVZuWIjo05vsrfKiNIrcTUSkytdKmVVx4J6pHTyhXkFmPeAoTqcLT17rePJO5jSHrjIP0WeGTPIawOU7MxSu-SSH4e9GQwHH7pjUZc7ntktwHBekAIjDIKk8gjb9aYlHDHwNdAqrST5RxdqlOss8VfY1D_y3mYeORZBehf_4DnE8WQvtjB8tYZkIeDDv7a-deBr8m944OuPPow-PiC3MeISnr6kmwsZkv7CujhQu-6ef8TXxFQXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RF9+Powerfully+Stimulates+Gonadotrophin+Secretion+in+the+Ewe%3A+Evidence+for+a+Seasonal+Threshold+of+Sensitivity&rft.jtitle=Journal+of+neuroendocrinology&rft.au=Caraty%2C+A&rft.au=Blomenrohr%2C+M&rft.au=Vogel%2C+GMT&rft.au=Lomet%2C+D&rft.date=2012-05-01&rft.issn=0953-8194&rft.eissn=1365-2826&rft.volume=24&rft.issue=5&rft.spage=725&rft.epage=736&rft_id=info:doi/10.1111%2Fj.1365-2826.2012.02283.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon |