A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen
This study analysed genomic variation of the translation elongation factor 1α (TEF‐1α) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comp...
Saved in:
Published in | Plant pathology Vol. 59; no. 2; pp. 348 - 357 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2010
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study analysed genomic variation of the translation elongation factor 1α (TEF‐1α) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups (VCG). Based on two single nucleotide polymorphisms present in the IGS region, a PCR‐based diagnostic tool was developed to specifically detect isolates from VCG 01213, also called tropical race 4 (TR4), which is currently a major concern in global banana production. Validation involved TR4 isolates, as well as Foc isolates from 19 other VCGs, other fungal plant pathogens and DNA samples from infected tissues of the Cavendish banana cultivar Grand Naine (AAA). Subsequently, a multiplex PCR was developed for fungal or plant samples that also discriminated Musa acuminata and M. balbisiana genotypes. It was concluded that this diagnostic procedure is currently the best option for the rapid and reliable detection and monitoring of TR4 to support eradication and quarantine strategies. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0032-0862 1365-3059 |
DOI: | 10.1111/j.1365-3059.2009.02221.x |