Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images

The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron’s soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in respo...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 14; no. 4; pp. 465 - 477
Main Authors Singh, Pankaj, Negi, Pooran, Laezza, Fernanda, Papadakis, Manos, Labate, Demetrio
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron’s soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1539-2791
1559-0089
DOI:10.1007/s12021-016-9306-9