Collagenase expression and activity in the stromal cells from giant cell tumour of bone

Abstract The characteristic bone destruction in giant cell tumour of bone (GCT) is largely attributed to the osteoclast-like giant cells. However, experimental analyses of bone resorption by cells from GCT often fail to exclude the neoplastic spindle-like stromal cells, and several studies have demo...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 44; no. 5; pp. 865 - 871
Main Authors Cowan, Robert W, Mak, Isabella W.Y, Colterjohn, Nigel, Singh, Gurmit, Ghert, Michelle
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.05.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The characteristic bone destruction in giant cell tumour of bone (GCT) is largely attributed to the osteoclast-like giant cells. However, experimental analyses of bone resorption by cells from GCT often fail to exclude the neoplastic spindle-like stromal cells, and several studies have demonstrated that bone resorption by GCT cells is increased in the presence of stromal cells. The spindle-like stromal cells from GCT may therefore actively contribute to the bone resorption observed in the tumour. Type I collagen, a major organic constituent of bone, is effectively degraded by three matrix metalloproteinases (MMPs) known as the collagenases: MMP-1, MMP-8 and MMP-13. We established primary cell cultures from nine patients with GCT and the stromal cell populations were isolated in culture. The production of collagenases by primary cultures of GCT stromal cells was determined through real-time PCR, western blot analysis and a multiplex assay system. Results show that the cells produce MMP-1 and MMP-13 but not MMP-8. Immunohistochemistry confirmed the presence of MMP-1 and MMP-13 in paraffin-embedded GCT tissue samples. Medium conditioned by the stromal cell cultures was capable of proteolytic activity as determined by MMP-1 and MMP-13-specific standardized enzyme activity assays. The spindle-like stromal cells from GCT may therefore actively participate in the bone destruction that is characteristic of the tumour.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Deceased.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2009.01.393