Transient Silencing of a Type IV P-Type ATPase, Atp10c, Results in Decreased Glucose Uptake in C2C12 Myotubes
Atp10c is a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C, Atp10c expression was altered in vitro in C2C12 skeletal muscle myotubes by transient transfection with an Atp10c-specific siRNA. Glucose uptake assays revealed that...
Saved in:
Published in | Journal of nutrition and metabolism Vol. 2012; no. 2012; pp. 1 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Puplishing Corporation
01.01.2012
Hindawi Publishing Corporation Hindawi Limited |
Online Access | Get full text |
Cover
Loading…
Summary: | Atp10c is a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C, Atp10c expression was altered in vitro in C2C12 skeletal muscle myotubes by transient transfection with an Atp10c-specific siRNA. Glucose uptake assays revealed that insulin stimulation caused a significant 2.54-fold decrease in 2-deoxyglucose uptake in transfected cells coupled with a significant upregulation of native mitogen-activated protein kinases (MAPKs), p38, and p44/42. Additionally, glucose transporter-1 (GLUT1) was significantly upregulated; no changes in glucose transporter-4 (GLUT4) expression were observed. The involvement of MAPKs was confirmed using the specific inhibitor SB203580, which downregulated the expression of native and phosphorylated MAPK proteins in transfected cells without any changes in insulin-stimulated glucose uptake. Results indicate that Atp10c regulates glucose metabolism, at least in part via the MAPK pathway, and, thus, plays a significant role in the development of insulin resistance and type 2 diabetes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academic Editor: Duo Li |
ISSN: | 2090-0724 2090-0732 |
DOI: | 10.1155/2012/152902 |