CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair

Inherited mutations in BRCA2 are associated with a predisposition to early-onset breast cancers. The underlying basis of tumorigenesis is thought to be linked to defects in DNA double-strand break repair by homologous recombination. Here we show that the carboxy-terminal region of BRCA2, which inter...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 434; no. 7033; pp. 598 - 604
Main Authors West, Stephen C, Esashi, Fumiko, Christ, Nicole, Gannon, Julian, Liu, Yilun, Hunt, Tim, Jasin, Maria
Format Journal Article
LanguageEnglish
Published London Nature Publishing 31.03.2005
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inherited mutations in BRCA2 are associated with a predisposition to early-onset breast cancers. The underlying basis of tumorigenesis is thought to be linked to defects in DNA double-strand break repair by homologous recombination. Here we show that the carboxy-terminal region of BRCA2, which interacts directly with the essential recombination protein RAD51, contains a site (serine 3291; S3291) that is phosphorylated by cyclin-dependent kinases. Phosphorylation of S3291 is low in S phase when recombination is active, but increases as cells progress towards mitosis. This modification blocks C-terminal interactions between BRCA2 and RAD51. However, DNA damage overcomes cell cycle regulation by decreasing S3291 phosphorylation and stimulating interactions with RAD51. These results indicate that S3291 phosphorylation might provide a molecular switch to regulate RAD51 recombination activity, providing new insight into why BRCA2 C-terminal deletions lead to radiation sensitivity and cancer predisposition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0028-0836
1476-4687
DOI:10.1038/nature03404