A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle
1. The K+ currents which control repolarization in adult mouse ventricle, and the effects of changes in action potential duration on excitation-contraction coupling in this tissue, have been studied with electrophysiological methods using single cell preparations and by recording mechanical paramete...
Saved in:
Published in | The Journal of physiology Vol. 504; no. Pt 3; pp. 557 - 563 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
01.11.1997
Blackwell Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 1. The K+ currents which control repolarization in adult mouse ventricle, and the effects of changes in action potential duration
on excitation-contraction coupling in this tissue, have been studied with electrophysiological methods using single cell preparations
and by recording mechanical parameters from an in vitro working heart preparation. 2. Under conditions where Ca(2+)-dependent
currents were eliminated by buffering intracellular Ca2+ with EGTA, depolarizing voltage steps elicited two rapidly activating
outward K+ currents: (i) a transient outward current, and (ii) a slowly inactivating or 'sustained' delayed rectifier. 3.
These two currents were separated pharmacologically by the K+ channel blocker 4-amino-pyridine (4-AP). 4-AP at concentrations
between 3 and 200 microM resulted in (i) a marked increase in action potential duration and a large decrease in the sustained
K+ current at plateau potentials, as well as (ii) a significant increase in left ventricular systolic pressure in the working
heart preparation. 4. The current-voltage (I-V) relation, kinetics, and block by low concentrations of 4-AP strongly suggest
that the rapid delayed rectifier in adult mouse ventricles is the same K+ current (Kv1.5) that has been characterized in detail
in human and canine atria. 5. These results show that the 4-AP-sensitive rapid delayed rectifier is a very important repolarizing
current in mouse ventricle. The enhanced contractility produced by 4-AP (50 microM) in the working heart preparation demonstrates
that modulation of the action potential duration, by blocking a K+ current, is a very significant inotropic variable. |
---|---|
Bibliography: | T. S. Larsen: Department of Medical Physiology, Faculty of Medicine, Tromsø, Norway. This manuscript was accepted as a Short Paper for rapid publication. Author's permanent address ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1111/j.1469-7793.1997.557bd.x |