An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense

Summary Emission of methylsalicylate (MeSA), and occasionally of methylbenzoate (MeBA), from Arabidopsis thaliana leaves was detected following the application of some forms of both biotic and abiotic stresses to the plant. Maximal emission of MeSA was observed following alamethicin treatment of lea...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 36; no. 5; pp. 577 - 588
Main Authors Chen, Feng, D'Auria, John C., Tholl, Dorothea, Ross, Jeannine R., Gershenzon, Jonathan, Noel, Joseph P., Pichersky, Eran
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.12.2003
Blackwell Science
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Emission of methylsalicylate (MeSA), and occasionally of methylbenzoate (MeBA), from Arabidopsis thaliana leaves was detected following the application of some forms of both biotic and abiotic stresses to the plant. Maximal emission of MeSA was observed following alamethicin treatment of leaves. A gene (AtBSMT1) encoding a protein with both benzoic acid (BA) and salicylic acid (SA) carboxyl methyltransferase activities was identified using a biochemical genomics approach. Its ortholog (AlBSMT1) in A. lyrata, a close relative of A. thaliana, was also isolated. The AtBSMT1 protein utilizes SA more efficiently than BA, whereas AlBSMT1 catalyzes the methylation of SA less effectively than that of BA. The AtBSMT1 and AlBSMT1 genes showed expression in leaves under normal growth conditions and were more highly expressed in the flowers. In A. thaliana leaves, the expression of AtBSMT1 was induced by alamethicin, Plutella xylostella herbivory, uprooting, physical wounding, and methyl jasmonate. SA was not an effective inducer. Using a β‐glucuronidase (GUS) reporter approach, the promoter activity of AtBSMT1 was localized to the sepals of flowers, and also to leaf trichomes and hydathodes. Upon thrip damage to leaves, AtBSMT1 promoter activity was induced specifically around the lesions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0960-7412
1365-313X
DOI:10.1046/j.1365-313X.2003.01902.x