Distinctive subtypes of bovine phospholipase C that have preferential expression in the retina and high homology to the norpA gene product of Drosophila

The Drosophila norpA gene encodes a phospholipase C involved in phototransduction. However, phospholipase C apparently is not directly involved in phototransduction in vertebrate photoreceptors, although light-activated phospholipase C activity has been reported in vertebrate rod outer segments. Con...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 90; no. 13; pp. 6042 - 6046
Main Authors Ferreira, P.A, Shortridge, R.D, Pak, W.L
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 01.07.1993
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Drosophila norpA gene encodes a phospholipase C involved in phototransduction. However, phospholipase C apparently is not directly involved in phototransduction in vertebrate photoreceptors, although light-activated phospholipase C activity has been reported in vertebrate rod outer segments. Conserved regions of norpA cDNA were used to isolate bovine cDNAs that would encode four alternative forms of phospholipase C of the beta class that are highly homologous to the norpA protein and expressed preferentially in the retina. Two of the variants are highly unusual in that they lack much of the N-terminal region present in all other known phospholipases C. The sequence conservation between these proteins and the norpA protein is higher than that between any other known phospholipases C. GTPase sequence motifs found in proteins of the GTPase superfamily are found conserved in all four variants of the bovine retinal protein as well as the norpA protein but not in other phospholipases C. Results suggest that these proteins together with the norpA protein constitute a distinctive subfamily of phospholipases C that are closely related in structure, function, and tissue distribution. Mutations in the norpA gene, in addition to blocking phototransduction, cause light-dependent degeneration of photoreceptors. In view of the strong similarity in structure and tissue distribution, a defect in these proteins may have similar consequences in the mammalian retina
Bibliography:9428514
L10
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.13.6042