Up-regulation of expression of the Ubiquitin Carboxyl-Terminal Hydrolase L1 gene in human airway epithelium of cigarette smokers

Neuroendocrine differentiation is a common feature of lung cancer and increased numbers of neuroendocrine cells and their peptides have been described in chronic smokers. To understand the effects of cigarette smoking on the gene expression profile of neuroendocrine cells, microarray analysis with T...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 66; no. 22; pp. 10729 - 10740
Main Authors CAROLAN, Brendan J, HEGUY, Adriana, HARVEY, Ben-Gary, LEOPOLD, Philip L, FERRIS, Barbara, CRYSTAL, Ronald G
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.11.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neuroendocrine differentiation is a common feature of lung cancer and increased numbers of neuroendocrine cells and their peptides have been described in chronic smokers. To understand the effects of cigarette smoking on the gene expression profile of neuroendocrine cells, microarray analysis with TaqMan confirmation was used to assess airway epithelial samples obtained by fiberoptic bronchoscopy from 81 individuals [normal nonsmokers, normal smokers, smokers with early chronic obstructive lung disease (COPD), and smokers with established COPD]. Of 11 genes considered to be neuroendocrine cell specific, only ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a member of the ubiquitin proteasome pathway, was consistently up-regulated in smokers compared with nonsmokers. Up-regulation of UCHL1 at the protein level was observed with immunohistochemical analysis of bronchial biopsies of smokers compared with nonsmokers. UCHL1 expression was evident only in neuroendocrine cells of the airway epithelium in nonsmokers; however, UCHL1 was also expressed in ciliated epithelial cells in smokers. This observation may add further weight to recent observations that ciliated cells are capable of transdifferentiating to other airway epithelial cells. In the context that UCHL1 is involved in the degradation of unwanted, misfolded, or damaged proteins within the cell and is overexpressed in >50% of lung cancers, its overexpression in chronic smokers may represent an early event in the complex transformation from normal epithelium to overt malignancy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-06-2224