Temperature resistant anti-reflective coating on Si-wafer for long-wave infra-red imaging
A micromachined Silicon lid, sealed by CuSn solid liquid interdiffusion bonding is a promising approach for hermetic sealing of microbolometers for use in low-cost thermal cameras. However, since ∼30% of long-wave infrared light is reflected at an uncoated single Si-air interface, anti-reflective tr...
Saved in:
Published in | Heliyon Vol. 9; no. 5; p. e15888 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A micromachined Silicon lid, sealed by CuSn solid liquid interdiffusion bonding is a promising approach for hermetic sealing of microbolometers for use in low-cost thermal cameras. However, since ∼30% of long-wave infrared light is reflected at an uncoated single Si-air interface, anti-reflective treatments are required. Traditional anti-reflective coatings are inapplicable since CuSn solid liquid interdiffusion bonding requires heating to about 270 °C and these multi-layer coatings fail due to differing coefficients of thermal expansion for the different layers and the substrate. For this purpose, an anti-reflective coating that maintains its anti-reflective properties after being heat-cycled to 300 °C has been developed. This coating was developed using a simple 2-layer structure composed of ZnS and YF3 and deposited at 100 °C. The development process that led to the successful coating has also been described in this paper. The final sample shows a 30% average increase in transmission in the 8–12 μm wavelength range as compared to an uncoated wafer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e15888 |