Temperature resistant anti-reflective coating on Si-wafer for long-wave infra-red imaging

A micromachined Silicon lid, sealed by CuSn solid liquid interdiffusion bonding is a promising approach for hermetic sealing of microbolometers for use in low-cost thermal cameras. However, since ∼30% of long-wave infrared light is reflected at an uncoated single Si-air interface, anti-reflective tr...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 5; p. e15888
Main Authors Papatzacos, Phillip H., Akram, M. Nadeem, Hector, Olivier, Lemarquis, Frédéric, Moreau, Antonin, Lumeau, Julien, Ohlckers, Per
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A micromachined Silicon lid, sealed by CuSn solid liquid interdiffusion bonding is a promising approach for hermetic sealing of microbolometers for use in low-cost thermal cameras. However, since ∼30% of long-wave infrared light is reflected at an uncoated single Si-air interface, anti-reflective treatments are required. Traditional anti-reflective coatings are inapplicable since CuSn solid liquid interdiffusion bonding requires heating to about 270 °C and these multi-layer coatings fail due to differing coefficients of thermal expansion for the different layers and the substrate. For this purpose, an anti-reflective coating that maintains its anti-reflective properties after being heat-cycled to 300 °C has been developed. This coating was developed using a simple 2-layer structure composed of ZnS and YF3 and deposited at 100 °C. The development process that led to the successful coating has also been described in this paper. The final sample shows a 30% average increase in transmission in the 8–12 μm wavelength range as compared to an uncoated wafer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e15888