Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects
Gemcitabine (GEM) is a powerful anticancer drug for various cancers. However, the anticancer efficacy and the side effects should be addressed for effective therapeutics. To this end, we created a GEM-conjugated polymer (P-GEM) based on cyclic acetal linkage as a delivery carrier of GEM. The obtaine...
Saved in:
Published in | Biomaterials Vol. 235; p. 119804 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9612 1878-5905 1878-5905 |
DOI | 10.1016/j.biomaterials.2020.119804 |
Cover
Summary: | Gemcitabine (GEM) is a powerful anticancer drug for various cancers. However, the anticancer efficacy and the side effects should be addressed for effective therapeutics. To this end, we created a GEM-conjugated polymer (P-GEM) based on cyclic acetal linkage as a delivery carrier of GEM. The obtained P-GEM stably conjugated GEM at physiological pH (i.e., bloodstream), but released GEM in response to acidic environments such as endosome/lysosome. After systemic administration of P-GEM for mice bearing subcutaneous tumors, it achieved prolonged blood circulation and enhanced tumor accumulation relative to free GEM system. In addition, the polymer-drug conjugate structure of P-GEM realized effective distribution in the tumor tissues toward the induction of apoptosis in most areas of the tumor sites. Of note, the molecular design of P-GEM achieved minimal accumulation in normal tissues, resulting in negligible GEM-derived adverse effects (e.g., gastrointestinal toxicity and hematotoxicity). Ultimately, even four times smaller dose of P-GEM on a GEM basis realized comparable/higher tumor growth suppression effect for two distinct pancreatic tumor models, compared to free GEM system. The obtained results suggest the huge potential of the present design of GEM-conjugated polymer for anticancer therapeutics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0142-9612 1878-5905 1878-5905 |
DOI: | 10.1016/j.biomaterials.2020.119804 |