Drosophila evolution challenges postulated redundancy in the E(spl) gene complex

The Enhancer of split [E(spl)] gene complex belongs to the class of neurogenic loci, which, in a concerted action, govern neurogenesis in Drosophila. Two genetically distinct functions, vital and neurogenic, reside within the complex defined by lethal mutations in the l(3) gro gene and by the typica...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 90; no. 12; pp. 5464 - 5468
Main Authors Maier, D, Marte, B.M, Schafer, W, Yu, Y, Preiss, A
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 15.06.1993
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Enhancer of split [E(spl)] gene complex belongs to the class of neurogenic loci, which, in a concerted action, govern neurogenesis in Drosophila. Two genetically distinct functions, vital and neurogenic, reside within the complex defined by lethal mutations in the l(3) gro gene and by the typical neurogenic phenotype of deletions, respectively. Such deletions always affect several of the many embryonically active genes in the region, which cannot be mutated separately to lethality. Seven of these genes are extremely similar at the transcription and sequence level sharing the basic helix-loop-helix (bHLH) motif of transcriptional regulators. While these E(spl) bHLH genes seem to be required collectively for neurogenesis, they are nonessential individually, suggesting functional redundancy of the encoded gene products. No specific functions could yet be ascribed to any of the other genes located within the complex. One might expect these apparently dispensable genes, as well as the supposedly redundant bHLH genes, to be under little evolutionary constraint and, thus, to evolve most rapidly. However, we find the entire E(spl) gene complex highly conserved during Drosophila evolution, indicating that all the genes as well as their organization are of functional importance.
Bibliography:L10
L60
9426188
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.12.5464