Lactate promoted cisplatin resistance in NSCLC by modulating the m6A modification-mediated FOXO3/MAGI1-IT1/miR-664b-3p/IL-6R axis

Cisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms. Lactate levels were measured by lacta...

Full description

Saved in:
Bibliographic Details
Published inNeoplasia (New York, N.Y.) Vol. 48; p. 100960
Main Authors Bo, Wei, Yu, Ning, Wang, Xiaokai, Wang, Chun, Liu, Chunying
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2024
Neoplasia Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cisplatin resistance is one of the major obstacles in non-small cell lung cancer (NSCLC) treatment. Intriguingly, elevated lactate levels were observed in cisplatin-resistant cells, which spurred further investigation into their underlying biological mechanisms. Lactate levels were measured by lactate detection kit. Cisplatin-resistance NSCLC cells were established using progressive concentration of cisplatin. Cell viability, proliferation, and apoptosis were detected by CCK-8, EdU, and flow cytometry, respectively. Cell proliferation in vivo was determined by immunohistochemistry of Ki67 and apoptotic cells were calculated by the TUNEL. MeRIP-PCR was used to measure FOXO3 m6A levels. The interactions of genes were analyzed via RIP, ChIP, Dual-luciferase reporter, and RNA pull-down, respectively. Elevated lactate levels were observed in both NSCLC patients and cisplatin-resistance cells. Lactate treatment increased cisplatin-resistance cell viability in vitro and promoted tumor growth in vivo. Mechanistically, lactate downregulated FOXO3 by YTHDF2-mediated m6A modification. FOXO3 transcriptionally reduced MAGI1-IT1 expression. FOXO3 overexpression inhibited the lactate-induced promotion of cisplatin resistance in NSCLC, which were reversed by MAGI1-IT1 overexpression. MAGI1-IT1 and IL6R competitively bound miR-664b-3p. FOXO3 overexpression or MAGI1-IT1 knockdown repressed lactate-mediated cisplatin resistance in vivo. Lactate promoted NSCLC cisplatin resistance through regulating FOXO3/MAGI1-IT1/miR-664b-3p/IL6R axis in YTHDF2-mediated m6A modification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Wei Bo and Ning Yu are the co-first authors.
ISSN:1476-5586
1522-8002
1476-5586
DOI:10.1016/j.neo.2023.100960