Effects of chronic antidepressant drug administration and electroconvulsive shock on activity of dopaminergic neurons in the ventral tegmentum

Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminer...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of neuropsychopharmacology Vol. 14; no. 2; pp. 201 - 210
Main Authors West, Charles H. K., Weiss, Jay M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2011
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 d via subcutaneously implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anaesthesia. Further, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either 3 d or 5 d after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on ‘burst’ firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1461-1457
1469-5111
DOI:10.1017/S1461145710000489