Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI

Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critic...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 14; no. 16; p. 1835
Main Authors Teng, Xinzhi, Wang, Yongqiang, Nicol, Alexander James, Ching, Jerry Chi Fung, Wong, Edwin Ka Yiu, Lam, Kenneth Tsz Chun, Zhang, Jiang, Lee, Shara Wee-Yee, Cai, Jing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics14161835

Cover

Loading…
Abstract Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
AbstractList Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.
Audience Academic
Author Teng, Xinzhi
Nicol, Alexander James
Cai, Jing
Wong, Edwin Ka Yiu
Wang, Yongqiang
Lam, Kenneth Tsz Chun
Zhang, Jiang
Ching, Jerry Chi Fung
Lee, Shara Wee-Yee
AuthorAffiliation 1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; xinzhi.teng@connect.polyu.hk (X.T.); wyq331@mail.ustc.edu.cn (Y.W.); alexander.nicol@connect.polyu.hk (A.J.N.); jerrycf.ching@connect.polyu.hk (J.C.F.C.); 24004171g@connect.polyu.hk (E.K.Y.W.); b101107132@tmu.edu.tw (K.T.C.L.); jiang.j.zhang@polyu.edu.hk (J.Z.)
2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
AuthorAffiliation_xml – name: 1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; xinzhi.teng@connect.polyu.hk (X.T.); wyq331@mail.ustc.edu.cn (Y.W.); alexander.nicol@connect.polyu.hk (A.J.N.); jerrycf.ching@connect.polyu.hk (J.C.F.C.); 24004171g@connect.polyu.hk (E.K.Y.W.); b101107132@tmu.edu.tw (K.T.C.L.); jiang.j.zhang@polyu.edu.hk (J.Z.)
– name: 2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
Author_xml – sequence: 1
  givenname: Xinzhi
  orcidid: 0000-0001-7515-8302
  surname: Teng
  fullname: Teng, Xinzhi
– sequence: 2
  givenname: Yongqiang
  orcidid: 0000-0001-8715-128X
  surname: Wang
  fullname: Wang, Yongqiang
– sequence: 3
  givenname: Alexander James
  orcidid: 0000-0002-1633-1133
  surname: Nicol
  fullname: Nicol, Alexander James
– sequence: 4
  givenname: Jerry Chi Fung
  orcidid: 0000-0003-1704-4061
  surname: Ching
  fullname: Ching, Jerry Chi Fung
– sequence: 5
  givenname: Edwin Ka Yiu
  surname: Wong
  fullname: Wong, Edwin Ka Yiu
– sequence: 6
  givenname: Kenneth Tsz Chun
  surname: Lam
  fullname: Lam, Kenneth Tsz Chun
– sequence: 7
  givenname: Jiang
  orcidid: 0000-0001-5807-1686
  surname: Zhang
  fullname: Zhang, Jiang
– sequence: 8
  givenname: Shara Wee-Yee
  orcidid: 0000-0001-5257-2076
  surname: Lee
  fullname: Lee, Shara Wee-Yee
– sequence: 9
  givenname: Jing
  orcidid: 0000-0001-6934-0108
  surname: Cai
  fullname: Cai, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39202322$$D View this record in MEDLINE/PubMed
BookMark eNp9kktrGzEUhYeS0jyaX1AoA91041QaSSOpm2JMmhpSCiFZC71mLCNLrjQu-N9XYztpHEJHixFX3zmXI93z6iTEYKvqAwRXCHHwxTjZh5gHpzPEsIUMkTfVWQMomWAM2cmz_Wl1mfMSlI9DxBryrjpFvAENapqzansdFjJoF_p6WNh65l1wWvr6YXDeDds6dvWdNC6uSqOv9dSYZHN-ohfSext6m3ecXVs5SLUXymDGSopmo92h5kI9u9-d_Lybv6_edtJne3n4X1QP36_vZz8mt79u5rPp7USTlg6TtlOMIq4M45JTjjClmCsusYItVgxy3rUdQdBo1RhELGkxUAQ3neVQYsrQRTXf-5ool2Kd3EqmrYjSiV0hpl7IVO7RW4F0S1FpKxllWBHFjLJMK4SsxYobW7y-7b3WG7WyRtswJOmPTI9PgluIPv4RECKCOGuLw-eDQ4q_NzYPYuWytt7LYOMmCwT4mHKPfnqBLuMmhXJXI0U5AKiB_6helgQudLE01qOpmDJAMYQE0EJdvUKVZWx52TJanSv1I8HH50mfIj5OTgH4HtAp5pxsJ7Qb5ODiGNx5AYEYB1W8MqhFi15oH-3_p_oLRUnuTA
CitedBy_id crossref_primary_10_1007_s00432_024_05971_4
crossref_primary_10_1016_j_ejrad_2025_111956
Cites_doi 10.1148/radiol.2015142202
10.1088/1361-6560/ab18d3
10.1186/s41747-021-00258-6
10.1158/1078-0432.CCR-18-3065
10.1038/s41598-021-83593-3
10.3390/diagnostics12020247
10.1259/bjr.20200947
10.1002/jmri.28191
10.1148/radiol.2020191145
10.1016/j.jcm.2016.02.012
10.1007/978-3-030-16399-0
10.18383/j.tom.2016.00208
10.1016/j.eclinm.2023.101899
10.1259/bjr.20200724
10.1371/journal.pone.0213459
10.1186/s13058-023-01674-9
10.3389/fonc.2022.974467
10.1007/s00259-022-06001-6
10.1002/acm2.12795
10.1016/j.ejrad.2021.109818
10.1007/s10334-023-01112-z
10.1016/j.ejrad.2020.109371
10.1148/radiol.2019190928
10.1038/nrclinonc.2017.141
10.1038/s41598-021-82760-w
10.1186/s13244-023-01415-8
10.3390/diagnostics11091573
10.1038/s41598-022-14178-x
10.3389/fcvm.2020.586236
10.1007/s00330-021-08282-1
10.3389/fonc.2022.881931
10.1038/ncomms5006
10.1148/radiol.2017161375
10.1002/jmri.27349
10.1007/s00261-021-03241-2
10.3389/fonc.2020.01708
10.3389/fonc.2021.633176
10.1016/j.diii.2021.10.004
10.1016/j.ijrobp.2018.05.053
10.1007/s00261-018-1600-6
10.1038/s41598-018-36938-4
10.1038/nrclinonc.2016.162
10.1007/s00330-022-08628-3
10.2214/AJR.19.21212
10.1002/mp.14038
10.1038/s41598-020-69534-6
10.1016/j.phro.2021.10.007
10.21037/qims-19-921
10.3390/cancers13184638
10.1016/j.radonc.2019.03.001
10.3390/cancers13184710
10.1148/radiol.2015151169
10.3390/diagnostics11071224
10.1007/s00330-021-08249-2
10.1038/s41598-023-45477-6
10.1148/ryai.2020190199
10.1016/j.ymeth.2020.08.007
10.1016/j.radonc.2023.109578
10.3390/jpm12040553
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics14161835
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_3c673c56a8784b5b8dbe8cb33ee4b9de
PMC11353986
A807411507
39202322
10_3390_diagnostics14161835
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Pamela Youde Nethersole Eastern Hospital
– fundername: Health Bureau of Hong Kong
  grantid: HMRF 09200576
– fundername: Shenzhen Science and Technology Foundation
  grantid: JCYJ 20210324130209023
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c567t-6fb8739bd89a979347749b9a4b164b8199f6f531dcb2d35e5640b542fe91a4783
IEDL.DBID M48
ISSN 2075-4418
IngestDate Wed Aug 27 01:12:17 EDT 2025
Thu Aug 21 18:31:53 EDT 2025
Fri Jul 11 14:28:58 EDT 2025
Mon Jun 30 17:04:17 EDT 2025
Tue Jun 17 22:04:37 EDT 2025
Tue Jun 10 21:04:18 EDT 2025
Thu Jan 02 22:32:56 EST 2025
Tue Jul 01 03:44:58 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords repeatability and reproducibility
radiomics
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-6fb8739bd89a979347749b9a4b164b8199f6f531dcb2d35e5640b542fe91a4783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7515-8302
0000-0003-1704-4061
0000-0001-5807-1686
0000-0001-6934-0108
0000-0002-1633-1133
0000-0001-8715-128X
0000-0001-5257-2076
OpenAccessLink https://doaj.org/article/3c673c56a8784b5b8dbe8cb33ee4b9de
PMID 39202322
PQID 3097900321
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_3c673c56a8784b5b8dbe8cb33ee4b9de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353986
proquest_miscellaneous_3099793986
proquest_journals_3097900321
gale_infotracmisc_A807411507
gale_infotracacademiconefile_A807411507
pubmed_primary_39202322
crossref_citationtrail_10_3390_diagnostics14161835
crossref_primary_10_3390_diagnostics14161835
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aboagye (ref_1) 2017; 14
Gruzdev (ref_36) 2020; 133
Prayer (ref_30) 2021; 188
Rinaldi (ref_42) 2022; 6
ref_57
Zwanenburg (ref_10) 2020; 295
Aerts (ref_4) 2014; 5
ref_51
Kocak (ref_53) 2023; 14
ref_19
ref_18
ref_17
ref_16
Lambin (ref_54) 2017; 14
ref_15
Hatt (ref_55) 2023; 50
Meyer (ref_39) 2019; 293
Pfaehler (ref_59) 2021; 20
Hoebel (ref_58) 2021; 3
Chen (ref_22) 2022; 32
Muenzfeld (ref_29) 2021; 141
ref_25
ref_24
Kocak (ref_32) 2019; 213
Miskin (ref_45) 2021; 46
Chen (ref_27) 2021; 94
ref_28
Koo (ref_56) 2016; 15
Huang (ref_5) 2023; 58
Moradmand (ref_26) 2020; 21
Pandey (ref_46) 2021; 53
Ahearn (ref_21) 2022; 56
Gourtsoyianni (ref_11) 2017; 284
Sullivan (ref_9) 2015; 277
Carbonell (ref_20) 2022; 32
Zhang (ref_52) 2023; 183
ref_34
Li (ref_23) 2020; 10
ref_33
ref_31
Denzler (ref_35) 2021; 94
Duron (ref_49) 2021; 102
Teng (ref_6) 2023; 25
ref_37
Traverso (ref_14) 2018; 102
Dewi (ref_47) 2023; 36
Peng (ref_7) 2019; 25
Lennartz (ref_38) 2022; 32
Scalco (ref_50) 2020; 47
ref_44
Gillies (ref_2) 2016; 278
ref_43
ref_41
ref_3
Fiset (ref_13) 2019; 135
ref_48
Leijenaar (ref_12) 2016; 2
ref_8
Perrin (ref_40) 2018; 43
References_xml – volume: 277
  start-page: 813
  year: 2015
  ident: ref_9
  article-title: Metrology Standards for Quantitative Imaging Biomarkers
  publication-title: Radiology
  doi: 10.1148/radiol.2015142202
– ident: ref_28
  doi: 10.1088/1361-6560/ab18d3
– volume: 6
  start-page: 2
  year: 2022
  ident: ref_42
  article-title: Reproducibility of radiomic features in CT images of NSCLC patients: An integrative analysis on the impact of acquisition and reconstruction parameters
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-021-00258-6
– volume: 25
  start-page: 4271
  year: 2019
  ident: ref_7
  article-title: Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-3065
– ident: ref_24
  doi: 10.1038/s41598-021-83593-3
– ident: ref_34
  doi: 10.3390/diagnostics12020247
– volume: 94
  start-page: 20200947
  year: 2021
  ident: ref_35
  article-title: Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20200947
– volume: 56
  start-page: 1559
  year: 2022
  ident: ref_21
  article-title: Investigation of the Inter- and Intrascanner Reproducibility and Repeatability of Radiomics Features in T1 -Weighted Brain MRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1002/jmri.28191
– volume: 295
  start-page: 328
  year: 2020
  ident: ref_10
  article-title: The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 15
  start-page: 155
  year: 2016
  ident: ref_56
  article-title: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
  publication-title: J. Chiropr. Med.
  doi: 10.1016/j.jcm.2016.02.012
– ident: ref_8
  doi: 10.1007/978-3-030-16399-0
– volume: 2
  start-page: 361
  year: 2016
  ident: ref_12
  article-title: Lambin, Test–Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific?
  publication-title: Tomography
  doi: 10.18383/j.tom.2016.00208
– volume: 58
  start-page: 101899
  year: 2023
  ident: ref_5
  article-title: Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: A multicenter, retrospective study
  publication-title: eClinicalMedicine
  doi: 10.1016/j.eclinm.2023.101899
– volume: 94
  start-page: 20200724
  year: 2021
  ident: ref_27
  article-title: Are computed-tomography-based hematoma radiomics features reproducible and predictive of intracerebral hemorrhage expansion? an in vitro experiment and clinical study
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20200724
– ident: ref_25
  doi: 10.1371/journal.pone.0213459
– volume: 25
  start-page: 77
  year: 2023
  ident: ref_6
  article-title: Noninvasive imaging signatures of HER2 and HR using ADC in invasive breast cancer: Repeatability, reproducibility, and association with pathological complete response to neoadjuvant chemotherapy
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-023-01674-9
– ident: ref_17
  doi: 10.3389/fonc.2022.974467
– volume: 50
  start-page: 352
  year: 2023
  ident: ref_55
  article-title: Joint EANM/SNMMI guideline on radiomics in nuclear medicine: Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-022-06001-6
– volume: 21
  start-page: 179
  year: 2020
  ident: ref_26
  article-title: Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.12795
– volume: 141
  start-page: 109818
  year: 2021
  ident: ref_29
  article-title: Intra-scanner repeatability of quantitative imaging features in a 3D printed semi-anthropomorphic CT phantom
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2021.109818
– volume: 36
  start-page: 945
  year: 2023
  ident: ref_47
  article-title: The impact of pre-processing and disease characteristics on reproducibility of T2-weighted MRI radiomics features
  publication-title: Magn. Reson. Mater. Phy.
  doi: 10.1007/s10334-023-01112-z
– volume: 133
  start-page: 109371
  year: 2020
  ident: ref_36
  article-title: Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109371
– volume: 293
  start-page: 583
  year: 2019
  ident: ref_39
  article-title: Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings
  publication-title: Radiology
  doi: 10.1148/radiol.2019190928
– volume: 14
  start-page: 749
  year: 2017
  ident: ref_54
  article-title: Radiomics: The bridge between medical imaging and personalized medicine
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.141
– ident: ref_33
  doi: 10.1038/s41598-021-82760-w
– volume: 14
  start-page: 75
  year: 2023
  ident: ref_53
  article-title: CheckList for EvaluAtion of Radiomics research (CLEAR): A step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII
  publication-title: Insights Imaging
  doi: 10.1186/s13244-023-01415-8
– ident: ref_51
  doi: 10.3390/diagnostics11091573
– ident: ref_16
  doi: 10.1038/s41598-022-14178-x
– ident: ref_48
  doi: 10.3389/fcvm.2020.586236
– volume: 32
  start-page: 2030
  year: 2022
  ident: ref_20
  article-title: Precision of MRI radiomics features in the liver and hepatocellular carcinoma
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08282-1
– ident: ref_31
  doi: 10.3389/fonc.2022.881931
– volume: 5
  start-page: 4006
  year: 2014
  ident: ref_4
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: 284
  start-page: 552
  year: 2017
  ident: ref_11
  article-title: Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features
  publication-title: Radiology
  doi: 10.1148/radiol.2017161375
– volume: 53
  start-page: 394
  year: 2021
  ident: ref_46
  article-title: Normative Baseline for Radiomics in Brain MRI: Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images
  publication-title: Magn. Reson. Imaging
  doi: 10.1002/jmri.27349
– volume: 46
  start-page: 5260
  year: 2021
  ident: ref_45
  article-title: Robustness and performance of radiomic features in diagnosing cystic renal masses
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-021-03241-2
– ident: ref_3
  doi: 10.3389/fonc.2020.01708
– ident: ref_18
  doi: 10.3389/fonc.2021.633176
– volume: 102
  start-page: 659
  year: 2021
  ident: ref_49
  article-title: Can we use radiomics in ultrasound imaging? Impact of preprocessing on feature repeatability
  publication-title: Diagn. Interv. Imaging
  doi: 10.1016/j.diii.2021.10.004
– volume: 102
  start-page: 1143
  year: 2018
  ident: ref_14
  article-title: Repeatability and Reproducibility of Radiomic Features: A Systematic Review
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2018.05.053
– volume: 43
  start-page: 3271
  year: 2018
  ident: ref_40
  article-title: Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging
  publication-title: Abdom. Radiol.
  doi: 10.1007/s00261-018-1600-6
– ident: ref_15
  doi: 10.1038/s41598-018-36938-4
– volume: 14
  start-page: 169
  year: 2017
  ident: ref_1
  article-title: Imaging biomarker roadmap for cancer studies
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.162
– volume: 32
  start-page: 5480
  year: 2022
  ident: ref_22
  article-title: Robustness of CT radiomics features: Consistency within and between single-energy CT and dual-energy CT
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08628-3
– volume: 213
  start-page: 377
  year: 2019
  ident: ref_32
  article-title: Reliability of Single-Slice–Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.19.21212
– volume: 47
  start-page: 1680
  year: 2020
  ident: ref_50
  article-title: T2w-MRI signal normalization affects radiomics features reproducibility
  publication-title: Med. Phys.
  doi: 10.1002/mp.14038
– ident: ref_44
  doi: 10.1038/s41598-020-69534-6
– volume: 20
  start-page: 69
  year: 2021
  ident: ref_59
  article-title: A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features
  publication-title: Phys. Imaging Radiat. Oncol.
  doi: 10.1016/j.phro.2021.10.007
– volume: 10
  start-page: 1775
  year: 2020
  ident: ref_23
  article-title: Influence of feature calculating parameters on the reproducibility of CT radiomic features: A thoracic phantom study
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-19-921
– ident: ref_37
  doi: 10.3390/cancers13184638
– volume: 135
  start-page: 107
  year: 2019
  ident: ref_13
  article-title: Repeatability and reproducibility of MRI-based radiomic features in cervical cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2019.03.001
– ident: ref_19
  doi: 10.3390/cancers13184710
– volume: 278
  start-page: 563
  year: 2016
  ident: ref_2
  article-title: Radiomics: Images Are More than Pictures, They Are Data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– ident: ref_43
  doi: 10.3390/diagnostics11071224
– volume: 32
  start-page: 1959
  year: 2022
  ident: ref_38
  article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08249-2
– ident: ref_57
  doi: 10.1038/s41598-023-45477-6
– volume: 3
  start-page: e190199
  year: 2021
  ident: ref_58
  article-title: Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020190199
– volume: 188
  start-page: 98
  year: 2021
  ident: ref_30
  article-title: Variability of computed tomography radiomics features of fibrosing interstitial lung disease: A test-retest study
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.08.007
– volume: 183
  start-page: 109578
  year: 2023
  ident: ref_52
  article-title: Radiomic feature repeatability and its impact on prognostic model generalizability: A multi-institutional study on nasopharyngeal carcinoma patients
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2023.109578
– ident: ref_41
  doi: 10.3390/jpm12040553
SSID ssj0000913825
Score 2.2912157
SecondaryResourceType review_article
Snippet Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1835
SubjectTerms Bias
Biomarkers
Evaluation
Magnetic resonance imaging
Medical imaging
Medical prognosis
Radiomics
repeatability and reproducibility
Reproducibility
Review
Scanners
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQD4gL4s1CQUZC4sKqWdvrtXsLVauCFA5VI_W28pNGqpyKpIf8-87Ym5AVCC5c7dnInvco428I-ci6OAnRtrVm0tQiSLC5wH3NTGMnLkDQCvjAefZdns_Ft6v2am_UF_aEFXjgwrgj7mTHXSuN6pSwrVXeBuUs5yEIq31A7wsxb6-Yyj5YI7ZeW2CGONT1R750riH2cYNJvcoD3n6FoozY_7tf3gtM46bJvSh09oQ8HtJHOi3HfkoehPSMPJwNf5A_J5vTdI0IGukHhcyODqifN3S-xh7YDV1GemH8Ap8ir47p1PvcBrul3g5WWWW6cAt-usB4b6hJHlcyPuxiWFskenKZd2YXX1-Q-dnp5cl5PUxXqIGb3bqW0aqOa-uVNhqsVEAiqK02wkIFZSFR0FFGsFDvLPO8Da0UE9sKFoNujOgUf0kO0jKF14Q21rW6YVCrRSe8ZLqzJhoWo4ZyLgpfEbZldO8G6HGcgHHTQwmC0un_IJ2KfN59dFuQN_5O_gUluCNF2Oy8AMrUD8rU_0uZKvIJ5d-jccMBnRneKMA1ESarnyJ0UM6hK3I4ogSjdOPtrQb1g1NY9XwCfAYvypqKfNht45fY6JbC8i7ToDC0khV5VRRudyVIZSHDYqwiaqSKozuPd9LiOkOGNzjeBH70zf_g0lvyCA4iShvkITlY_7wL7yA1W9v32QrvAW9jOrA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtAqWX0nfdpsWFQi81WUuyLfVSNmFDWthQlizkZvRMFoK9zW4O--87I8tOTEuu0siWPA_NyKNvCPlCKz9xXheZpKXKuCtB5xyzGVW5nhgHm5bDC87zs_J0yX9dFBfxwG0T0yp7mxgMtW0NnpEfsoms8NSN5j_WfzKsGoV_V2MJjcdkH0ywAAnfP5qd_V4MpyyIegkxUAc3xCC-P7RdBhtiIOfo3ItQ6O1uSwrI_f_a53sb1Dh58t5udPKcPItuZDrt-P6CPHLNS_JkHn-UvyK7WXOFSBrNZQoeXhrRP6_T5RZzYXdp69OFsiu8krz5nk6tDemwPXVfYGUT6Nwa7HUH571LVWOxJeDErmLbqkmPz0PPfPHzNVmezM6PT7NYZSEzRVlts9JrUTGprZAKPjHj4BBKLRXXEElpcBikLz1oqjWaWla4ouQTXXDqncwVrwR7Q_aatnHvSJprU8icQszmDbcllZVWXlHvJYR1ntuE0P5D1yZCkGMljOsaQhHkTv0f7iTk2zBo3SFwPEx-hBwcSBE-OzS0N5d11MaambJisHwlKsF1oYXVThjNmHNcS-sS8hX5X6OSwwSNincVYJkIl1VPEUIo-NIJORhRgnKacXcvQXU0Dpv6TpQT8nnoxpGY8Na49jbQIDOkKBPythO4YUng0oKnRWlCxEgUR2se9zSrqwAdnmOZE3jo-4fn9YE8hVfwLtHxgOxtb27dR3C-tvpT1LC_-rAyLg
  priority: 102
  providerName: ProQuest
Title Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/39202322
https://www.proquest.com/docview/3097900321
https://www.proquest.com/docview/3099793986
https://pubmed.ncbi.nlm.nih.gov/PMC11353986
https://doaj.org/article/3c673c56a8784b5b8dbe8cb33ee4b9de
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FsZexr7nrQseDPYyb7Es29JgjLSkdIOUERrom5EsqQ0Ep0tSWP773clyqFk39iqdPyTd6X5nn34H8I6VbmidzhPJCpVwW6DN2cwkTKV6WFt0WpYOOE_OitMZ_36RX-xBVxU1TOD6ztCO6knNVouPv35uv6LBf6GIE0P2T6ZNSiNa45TwOoKKe3CArqmkWg6TgPf91iyJco_SGhm6ygShgGiZiP52n5638qT-f27dt3xXP6_ylqM6eQQPA8KMR61KPIY92zyB-5PwD_0pbMfNFZFsNJcxgr84EIMu4tmG0mS38dLFU2XmdFp5_TkeGeMzZTvprvbK2svZa9zKW6bvbawaQy2eQnYe2uZNfHzueybTb89gdjI-Pz5NQgGGpM6LcpMUTosyk9oIqSQaMkesKLVUXGOQpRFLSFc4NGJTa2ay3OYFH-qcM2dlqngpsuew3ywb-xLiVNe5TBmGc67mpmCy1Mop5pzEiM9xEwHrJrqqAzs5FclYVBil0OpUd6xOBB92F1235Bz_Fj-iFdyJErO2b1iuLqtgqFVWF2WGw1eiFFznWhhtRa2zzFqupbERvKf1r0gj8QVrFY4x4DCJSasaEbuQh9kRHPYk0W7rfnenQVWn9lU2xHnGjZalEbzdddOVlAvX2OWNl6HFkKKI4EWrcLshIdpFEMZYBKKnir0x93ua-ZVnFU-pAgre9NV_PPg1PMDn8DYR8hD2N6sb-wbB2UYP4OBofPZjOvAfNwbe_H4DID88-w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBgQJxAvRGtv5MBJC3djUsrVCVSvtLdixvVWa0rJ2Qv2n-Bu5y0e3CLS3vdoXJ87d-e7s8-8A3rPEda3TUSBZrAJhY9Q5y03AVKi7uUWjZemC83AU96fi-0l0sgV_mrswlFbZrInlQm3mOe2R7_KuTGjXjYVfF78CqhpFp6tNCY1KLI7s-jeGbMsvg2_I3w-MHR5M9vtBXVUgyKM4WQWx02nCpTapVDgkF-gASS2V0Bg5aDSQ0sUOJdPkmhke2SgWXR0J5qwMlUhSjuPegW3B0VXowPbewejHeLOrQyibGHNV8Eacy-6uqTLmCHM5pGAiLQvLXZnAslLAv_bgmkFsJ2tes36HD-FB7bb6vUrOHsGWLR7D3WF9MP8E1gfFGSF3FKc-epR-jTZ67k9XlHu79ufOHyszoyvQy89-z5gy_bahbgq6LEs6u0D7UMGHr31VGGopcWlnddus8PcnZc9wPHgK01v5_8-gU8wL-wL8UOeRDBnGiC4XJmYy0cop5pzEMNIJ4wFrfnSW15DnVHnjPMPQh7iT_Yc7HnzaPLSoED9uJt8jDm5ICa67bJhfnGa19mc8jxOO01dpkgod6dRom-aac2uFlsZ68JH4n9Gigh-Yq_puBE6T4LmyHkEWlb67BzstSlwM8nZ3I0FZvRgtsyvV8eDdppuepAS7ws4vSxpihkxjD55XAreZErrQ6Nkx5kHaEsXWnNs9xeyshCoPqawKDvry5u96C_f6k-FxdjwYHb2C-_g6USVZ7kBndXFpX6Pjt9Jvam3z4edtK_hfgPtttw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6FMpexr7nrds82NjLTGxJ_tBgjLRNaNYllNBA31zLktpAcbImZeRf21-3O3-kNRt966t0li3f6T6k0-8APrLY-saq0JMsyjxhIlxzhmuPZYHyc4NGy9AF59E4OpyKH6fh6Rb8ae7CUFploxNLRa3nOe2Rd7kvY9p1Y0HX1mkRxweD74tfHlWQopPWppxGJSJHZv0bw7flt-EB8voTY4P-yf6hV1cY8PIwildeZFUSc6l0IjMcngt0hqSSmVAYRSg0ltJGFqVU54ppHpowEr4KBbNGBpmIE47jPoDtmK6PdmB7rz8-nmx2eAhxE-OvCuqIc-l3dZU9R_jLAQUWSVlk7sYcllUD_rUNt4xjO3HzliUcPIZHtQvr9iqZewJbpngKO6P6kP4ZrPvFBaF4FOcuepdujTx66U5XlIe7dufWnWR6Rtehl1_dntZlKm5D3RR3WZZ0ZoG2ooISX7tZoamlxKid1W2zwt0_KXtGk-FzmN7L_38BnWJemFfgBioPZcAwXrS50BGTscpsxqyVGFJaoR1gzY9O8xr-nKpwXKYYBhF30v9wx4Evm4cWFfrH3eR7xMENKUF3lw3zq_O01gQpz6OY4_SzJE6EClWilUlyxbkxQkltHPhM_E9JweAH5ll9TwKnSVBdaY_gi0o_3oHdFiUqhrzd3UhQWiumZXqzjBz4sOmmJynZrjDz65KGmCGTyIGXlcBtpoTuNHp5jDmQtESxNed2TzG7KGHLAyqxgoO-vvu73sMOLuz053B89AYe4ttElW-5C53V1bV5iz7gSr2rF5sLZ_e9vv8CnxFx9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Clinical+Utility+of+Radiomics%3A+Addressing+the+Challenges+of+Repeatability+and+Reproducibility+in+CT+and+MRI&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Teng%2C+Xinzhi&rft.au=Wang%2C+Yongqiang&rft.au=Nicol%2C+Alexander+James&rft.au=Ching%2C+Jerry+Chi+Fung&rft.date=2024-08-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=16&rft_id=info:doi/10.3390%2Fdiagnostics14161835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon