Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI
Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critic...
Saved in:
Published in | Diagnostics (Basel) Vol. 14; no. 16; p. 1835 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics14161835 |
Cover
Loading…
Abstract | Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice. |
---|---|
AbstractList | Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice. Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice.Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its potential in the diagnosis and prognosis of oncological conditions. However, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This review aims to address the paucity of discussion regarding the factors that influence the reproducibility and repeatability of radiomic features and their subsequent impact on the application of radiomic models. We provide a synthesis of the literature on the repeatability and reproducibility of CT/MR-based radiomic features, examining sources of variation, the number of reproducible features, and the availability of individual feature repeatability indices. We differentiate sources of variation into random effects, which are challenging to control but can be quantified through simulation methods such as perturbation, and biases, which arise from scanner variability and inter-reader differences and can significantly affect the generalizability of radiomic model performance in diverse settings. Four suggestions for repeatability and reproducibility studies are suggested: (1) detailed reporting of variation sources, (2) transparent disclosure of calculation parameters, (3) careful selection of suitable reliability indices, and (4) comprehensive reporting of reliability metrics. This review underscores the importance of random effects in feature selection and harmonizing biases between development and clinical application settings to facilitate the successful translation of radiomic models from research to clinical practice. |
Audience | Academic |
Author | Teng, Xinzhi Nicol, Alexander James Cai, Jing Wong, Edwin Ka Yiu Wang, Yongqiang Lam, Kenneth Tsz Chun Zhang, Jiang Ching, Jerry Chi Fung Lee, Shara Wee-Yee |
AuthorAffiliation | 1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; xinzhi.teng@connect.polyu.hk (X.T.); wyq331@mail.ustc.edu.cn (Y.W.); alexander.nicol@connect.polyu.hk (A.J.N.); jerrycf.ching@connect.polyu.hk (J.C.F.C.); 24004171g@connect.polyu.hk (E.K.Y.W.); b101107132@tmu.edu.tw (K.T.C.L.); jiang.j.zhang@polyu.edu.hk (J.Z.) 2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China |
AuthorAffiliation_xml | – name: 1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; xinzhi.teng@connect.polyu.hk (X.T.); wyq331@mail.ustc.edu.cn (Y.W.); alexander.nicol@connect.polyu.hk (A.J.N.); jerrycf.ching@connect.polyu.hk (J.C.F.C.); 24004171g@connect.polyu.hk (E.K.Y.W.); b101107132@tmu.edu.tw (K.T.C.L.); jiang.j.zhang@polyu.edu.hk (J.Z.) – name: 2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China |
Author_xml | – sequence: 1 givenname: Xinzhi orcidid: 0000-0001-7515-8302 surname: Teng fullname: Teng, Xinzhi – sequence: 2 givenname: Yongqiang orcidid: 0000-0001-8715-128X surname: Wang fullname: Wang, Yongqiang – sequence: 3 givenname: Alexander James orcidid: 0000-0002-1633-1133 surname: Nicol fullname: Nicol, Alexander James – sequence: 4 givenname: Jerry Chi Fung orcidid: 0000-0003-1704-4061 surname: Ching fullname: Ching, Jerry Chi Fung – sequence: 5 givenname: Edwin Ka Yiu surname: Wong fullname: Wong, Edwin Ka Yiu – sequence: 6 givenname: Kenneth Tsz Chun surname: Lam fullname: Lam, Kenneth Tsz Chun – sequence: 7 givenname: Jiang orcidid: 0000-0001-5807-1686 surname: Zhang fullname: Zhang, Jiang – sequence: 8 givenname: Shara Wee-Yee orcidid: 0000-0001-5257-2076 surname: Lee fullname: Lee, Shara Wee-Yee – sequence: 9 givenname: Jing orcidid: 0000-0001-6934-0108 surname: Cai fullname: Cai, Jing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39202322$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktrGzEUhYeS0jyaX1AoA91041QaSSOpm2JMmhpSCiFZC71mLCNLrjQu-N9XYztpHEJHixFX3zmXI93z6iTEYKvqAwRXCHHwxTjZh5gHpzPEsIUMkTfVWQMomWAM2cmz_Wl1mfMSlI9DxBryrjpFvAENapqzansdFjJoF_p6WNh65l1wWvr6YXDeDds6dvWdNC6uSqOv9dSYZHN-ohfSext6m3ecXVs5SLUXymDGSopmo92h5kI9u9-d_Lybv6_edtJne3n4X1QP36_vZz8mt79u5rPp7USTlg6TtlOMIq4M45JTjjClmCsusYItVgxy3rUdQdBo1RhELGkxUAQ3neVQYsrQRTXf-5ool2Kd3EqmrYjSiV0hpl7IVO7RW4F0S1FpKxllWBHFjLJMK4SsxYobW7y-7b3WG7WyRtswJOmPTI9PgluIPv4RECKCOGuLw-eDQ4q_NzYPYuWytt7LYOMmCwT4mHKPfnqBLuMmhXJXI0U5AKiB_6helgQudLE01qOpmDJAMYQE0EJdvUKVZWx52TJanSv1I8HH50mfIj5OTgH4HtAp5pxsJ7Qb5ODiGNx5AYEYB1W8MqhFi15oH-3_p_oLRUnuTA |
CitedBy_id | crossref_primary_10_1007_s00432_024_05971_4 crossref_primary_10_1016_j_ejrad_2025_111956 |
Cites_doi | 10.1148/radiol.2015142202 10.1088/1361-6560/ab18d3 10.1186/s41747-021-00258-6 10.1158/1078-0432.CCR-18-3065 10.1038/s41598-021-83593-3 10.3390/diagnostics12020247 10.1259/bjr.20200947 10.1002/jmri.28191 10.1148/radiol.2020191145 10.1016/j.jcm.2016.02.012 10.1007/978-3-030-16399-0 10.18383/j.tom.2016.00208 10.1016/j.eclinm.2023.101899 10.1259/bjr.20200724 10.1371/journal.pone.0213459 10.1186/s13058-023-01674-9 10.3389/fonc.2022.974467 10.1007/s00259-022-06001-6 10.1002/acm2.12795 10.1016/j.ejrad.2021.109818 10.1007/s10334-023-01112-z 10.1016/j.ejrad.2020.109371 10.1148/radiol.2019190928 10.1038/nrclinonc.2017.141 10.1038/s41598-021-82760-w 10.1186/s13244-023-01415-8 10.3390/diagnostics11091573 10.1038/s41598-022-14178-x 10.3389/fcvm.2020.586236 10.1007/s00330-021-08282-1 10.3389/fonc.2022.881931 10.1038/ncomms5006 10.1148/radiol.2017161375 10.1002/jmri.27349 10.1007/s00261-021-03241-2 10.3389/fonc.2020.01708 10.3389/fonc.2021.633176 10.1016/j.diii.2021.10.004 10.1016/j.ijrobp.2018.05.053 10.1007/s00261-018-1600-6 10.1038/s41598-018-36938-4 10.1038/nrclinonc.2016.162 10.1007/s00330-022-08628-3 10.2214/AJR.19.21212 10.1002/mp.14038 10.1038/s41598-020-69534-6 10.1016/j.phro.2021.10.007 10.21037/qims-19-921 10.3390/cancers13184638 10.1016/j.radonc.2019.03.001 10.3390/cancers13184710 10.1148/radiol.2015151169 10.3390/diagnostics11071224 10.1007/s00330-021-08249-2 10.1038/s41598-023-45477-6 10.1148/ryai.2020190199 10.1016/j.ymeth.2020.08.007 10.1016/j.radonc.2023.109578 10.3390/jpm12040553 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics14161835 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_3c673c56a8784b5b8dbe8cb33ee4b9de PMC11353986 A807411507 39202322 10_3390_diagnostics14161835 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Pamela Youde Nethersole Eastern Hospital – fundername: Health Bureau of Hong Kong grantid: HMRF 09200576 – fundername: Shenzhen Science and Technology Foundation grantid: JCYJ 20210324130209023 |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-6fb8739bd89a979347749b9a4b164b8199f6f531dcb2d35e5640b542fe91a4783 |
IEDL.DBID | M48 |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 01:12:17 EDT 2025 Thu Aug 21 18:31:53 EDT 2025 Fri Jul 11 14:28:58 EDT 2025 Mon Jun 30 17:04:17 EDT 2025 Tue Jun 17 22:04:37 EDT 2025 Tue Jun 10 21:04:18 EDT 2025 Thu Jan 02 22:32:56 EST 2025 Tue Jul 01 03:44:58 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | repeatability and reproducibility radiomics |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-6fb8739bd89a979347749b9a4b164b8199f6f531dcb2d35e5640b542fe91a4783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7515-8302 0000-0003-1704-4061 0000-0001-5807-1686 0000-0001-6934-0108 0000-0002-1633-1133 0000-0001-8715-128X 0000-0001-5257-2076 |
OpenAccessLink | https://doaj.org/article/3c673c56a8784b5b8dbe8cb33ee4b9de |
PMID | 39202322 |
PQID | 3097900321 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c673c56a8784b5b8dbe8cb33ee4b9de pubmedcentral_primary_oai_pubmedcentral_nih_gov_11353986 proquest_miscellaneous_3099793986 proquest_journals_3097900321 gale_infotracmisc_A807411507 gale_infotracacademiconefile_A807411507 pubmed_primary_39202322 crossref_citationtrail_10_3390_diagnostics14161835 crossref_primary_10_3390_diagnostics14161835 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Aboagye (ref_1) 2017; 14 Gruzdev (ref_36) 2020; 133 Prayer (ref_30) 2021; 188 Rinaldi (ref_42) 2022; 6 ref_57 Zwanenburg (ref_10) 2020; 295 Aerts (ref_4) 2014; 5 ref_51 Kocak (ref_53) 2023; 14 ref_19 ref_18 ref_17 ref_16 Lambin (ref_54) 2017; 14 ref_15 Hatt (ref_55) 2023; 50 Meyer (ref_39) 2019; 293 Pfaehler (ref_59) 2021; 20 Hoebel (ref_58) 2021; 3 Chen (ref_22) 2022; 32 Muenzfeld (ref_29) 2021; 141 ref_25 ref_24 Kocak (ref_32) 2019; 213 Miskin (ref_45) 2021; 46 Chen (ref_27) 2021; 94 ref_28 Koo (ref_56) 2016; 15 Huang (ref_5) 2023; 58 Moradmand (ref_26) 2020; 21 Pandey (ref_46) 2021; 53 Ahearn (ref_21) 2022; 56 Gourtsoyianni (ref_11) 2017; 284 Sullivan (ref_9) 2015; 277 Carbonell (ref_20) 2022; 32 Zhang (ref_52) 2023; 183 ref_34 Li (ref_23) 2020; 10 ref_33 ref_31 Denzler (ref_35) 2021; 94 Duron (ref_49) 2021; 102 Teng (ref_6) 2023; 25 ref_37 Traverso (ref_14) 2018; 102 Dewi (ref_47) 2023; 36 Peng (ref_7) 2019; 25 Lennartz (ref_38) 2022; 32 Scalco (ref_50) 2020; 47 ref_44 Gillies (ref_2) 2016; 278 ref_43 ref_41 ref_3 Fiset (ref_13) 2019; 135 ref_48 Leijenaar (ref_12) 2016; 2 ref_8 Perrin (ref_40) 2018; 43 |
References_xml | – volume: 277 start-page: 813 year: 2015 ident: ref_9 article-title: Metrology Standards for Quantitative Imaging Biomarkers publication-title: Radiology doi: 10.1148/radiol.2015142202 – ident: ref_28 doi: 10.1088/1361-6560/ab18d3 – volume: 6 start-page: 2 year: 2022 ident: ref_42 article-title: Reproducibility of radiomic features in CT images of NSCLC patients: An integrative analysis on the impact of acquisition and reconstruction parameters publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-021-00258-6 – volume: 25 start-page: 4271 year: 2019 ident: ref_7 article-title: Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-3065 – ident: ref_24 doi: 10.1038/s41598-021-83593-3 – ident: ref_34 doi: 10.3390/diagnostics12020247 – volume: 94 start-page: 20200947 year: 2021 ident: ref_35 article-title: Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types publication-title: Br. J. Radiol. doi: 10.1259/bjr.20200947 – volume: 56 start-page: 1559 year: 2022 ident: ref_21 article-title: Investigation of the Inter- and Intrascanner Reproducibility and Repeatability of Radiomics Features in T1 -Weighted Brain MRI publication-title: Magn. Reson. Imaging doi: 10.1002/jmri.28191 – volume: 295 start-page: 328 year: 2020 ident: ref_10 article-title: The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 15 start-page: 155 year: 2016 ident: ref_56 article-title: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research publication-title: J. Chiropr. Med. doi: 10.1016/j.jcm.2016.02.012 – ident: ref_8 doi: 10.1007/978-3-030-16399-0 – volume: 2 start-page: 361 year: 2016 ident: ref_12 article-title: Lambin, Test–Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific? publication-title: Tomography doi: 10.18383/j.tom.2016.00208 – volume: 58 start-page: 101899 year: 2023 ident: ref_5 article-title: Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: A multicenter, retrospective study publication-title: eClinicalMedicine doi: 10.1016/j.eclinm.2023.101899 – volume: 94 start-page: 20200724 year: 2021 ident: ref_27 article-title: Are computed-tomography-based hematoma radiomics features reproducible and predictive of intracerebral hemorrhage expansion? an in vitro experiment and clinical study publication-title: Br. J. Radiol. doi: 10.1259/bjr.20200724 – ident: ref_25 doi: 10.1371/journal.pone.0213459 – volume: 25 start-page: 77 year: 2023 ident: ref_6 article-title: Noninvasive imaging signatures of HER2 and HR using ADC in invasive breast cancer: Repeatability, reproducibility, and association with pathological complete response to neoadjuvant chemotherapy publication-title: Breast Cancer Res. doi: 10.1186/s13058-023-01674-9 – ident: ref_17 doi: 10.3389/fonc.2022.974467 – volume: 50 start-page: 352 year: 2023 ident: ref_55 article-title: Joint EANM/SNMMI guideline on radiomics in nuclear medicine: Jointly supported by the EANM Physics Committee and the SNMMI Physics, Instrumentation and Data Sciences Council publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-022-06001-6 – volume: 21 start-page: 179 year: 2020 ident: ref_26 article-title: Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma publication-title: J. Appl. Clin. Med. Phys. doi: 10.1002/acm2.12795 – volume: 141 start-page: 109818 year: 2021 ident: ref_29 article-title: Intra-scanner repeatability of quantitative imaging features in a 3D printed semi-anthropomorphic CT phantom publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2021.109818 – volume: 36 start-page: 945 year: 2023 ident: ref_47 article-title: The impact of pre-processing and disease characteristics on reproducibility of T2-weighted MRI radiomics features publication-title: Magn. Reson. Mater. Phy. doi: 10.1007/s10334-023-01112-z – volume: 133 start-page: 109371 year: 2020 ident: ref_36 article-title: Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109371 – volume: 293 start-page: 583 year: 2019 ident: ref_39 article-title: Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings publication-title: Radiology doi: 10.1148/radiol.2019190928 – volume: 14 start-page: 749 year: 2017 ident: ref_54 article-title: Radiomics: The bridge between medical imaging and personalized medicine publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.141 – ident: ref_33 doi: 10.1038/s41598-021-82760-w – volume: 14 start-page: 75 year: 2023 ident: ref_53 article-title: CheckList for EvaluAtion of Radiomics research (CLEAR): A step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII publication-title: Insights Imaging doi: 10.1186/s13244-023-01415-8 – ident: ref_51 doi: 10.3390/diagnostics11091573 – ident: ref_16 doi: 10.1038/s41598-022-14178-x – ident: ref_48 doi: 10.3389/fcvm.2020.586236 – volume: 32 start-page: 2030 year: 2022 ident: ref_20 article-title: Precision of MRI radiomics features in the liver and hepatocellular carcinoma publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08282-1 – ident: ref_31 doi: 10.3389/fonc.2022.881931 – volume: 5 start-page: 4006 year: 2014 ident: ref_4 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: 284 start-page: 552 year: 2017 ident: ref_11 article-title: Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features publication-title: Radiology doi: 10.1148/radiol.2017161375 – volume: 53 start-page: 394 year: 2021 ident: ref_46 article-title: Normative Baseline for Radiomics in Brain MRI: Evaluating the Robustness, Regional Variations, and Reproducibility on FLAIR Images publication-title: Magn. Reson. Imaging doi: 10.1002/jmri.27349 – volume: 46 start-page: 5260 year: 2021 ident: ref_45 article-title: Robustness and performance of radiomic features in diagnosing cystic renal masses publication-title: Abdom. Radiol. doi: 10.1007/s00261-021-03241-2 – ident: ref_3 doi: 10.3389/fonc.2020.01708 – ident: ref_18 doi: 10.3389/fonc.2021.633176 – volume: 102 start-page: 659 year: 2021 ident: ref_49 article-title: Can we use radiomics in ultrasound imaging? Impact of preprocessing on feature repeatability publication-title: Diagn. Interv. Imaging doi: 10.1016/j.diii.2021.10.004 – volume: 102 start-page: 1143 year: 2018 ident: ref_14 article-title: Repeatability and Reproducibility of Radiomic Features: A Systematic Review publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2018.05.053 – volume: 43 start-page: 3271 year: 2018 ident: ref_40 article-title: Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging publication-title: Abdom. Radiol. doi: 10.1007/s00261-018-1600-6 – ident: ref_15 doi: 10.1038/s41598-018-36938-4 – volume: 14 start-page: 169 year: 2017 ident: ref_1 article-title: Imaging biomarker roadmap for cancer studies publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2016.162 – volume: 32 start-page: 5480 year: 2022 ident: ref_22 article-title: Robustness of CT radiomics features: Consistency within and between single-energy CT and dual-energy CT publication-title: Eur. Radiol. doi: 10.1007/s00330-022-08628-3 – volume: 213 start-page: 377 year: 2019 ident: ref_32 article-title: Reliability of Single-Slice–Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.19.21212 – volume: 47 start-page: 1680 year: 2020 ident: ref_50 article-title: T2w-MRI signal normalization affects radiomics features reproducibility publication-title: Med. Phys. doi: 10.1002/mp.14038 – ident: ref_44 doi: 10.1038/s41598-020-69534-6 – volume: 20 start-page: 69 year: 2021 ident: ref_59 article-title: A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features publication-title: Phys. Imaging Radiat. Oncol. doi: 10.1016/j.phro.2021.10.007 – volume: 10 start-page: 1775 year: 2020 ident: ref_23 article-title: Influence of feature calculating parameters on the reproducibility of CT radiomic features: A thoracic phantom study publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-19-921 – ident: ref_37 doi: 10.3390/cancers13184638 – volume: 135 start-page: 107 year: 2019 ident: ref_13 article-title: Repeatability and reproducibility of MRI-based radiomic features in cervical cancer publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2019.03.001 – ident: ref_19 doi: 10.3390/cancers13184710 – volume: 278 start-page: 563 year: 2016 ident: ref_2 article-title: Radiomics: Images Are More than Pictures, They Are Data publication-title: Radiology doi: 10.1148/radiol.2015151169 – ident: ref_43 doi: 10.3390/diagnostics11071224 – volume: 32 start-page: 1959 year: 2022 ident: ref_38 article-title: Robustness of dual-energy CT-derived radiomic features across three different scanner types publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08249-2 – ident: ref_57 doi: 10.1038/s41598-023-45477-6 – volume: 3 start-page: e190199 year: 2021 ident: ref_58 article-title: Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020190199 – volume: 188 start-page: 98 year: 2021 ident: ref_30 article-title: Variability of computed tomography radiomics features of fibrosing interstitial lung disease: A test-retest study publication-title: Methods doi: 10.1016/j.ymeth.2020.08.007 – volume: 183 start-page: 109578 year: 2023 ident: ref_52 article-title: Radiomic feature repeatability and its impact on prognostic model generalizability: A multi-institutional study on nasopharyngeal carcinoma patients publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2023.109578 – ident: ref_41 doi: 10.3390/jpm12040553 |
SSID | ssj0000913825 |
Score | 2.2912157 |
SecondaryResourceType | review_article |
Snippet | Radiomics, which integrates the comprehensive characterization of imaging phenotypes with machine learning algorithms, is increasingly recognized for its... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1835 |
SubjectTerms | Bias Biomarkers Evaluation Magnetic resonance imaging Medical imaging Medical prognosis Radiomics repeatability and reproducibility Reproducibility Review Scanners |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQD4gL4s1CQUZC4sKqWdvrtXsLVauCFA5VI_W28pNGqpyKpIf8-87Ym5AVCC5c7dnInvco428I-ci6OAnRtrVm0tQiSLC5wH3NTGMnLkDQCvjAefZdns_Ft6v2am_UF_aEFXjgwrgj7mTHXSuN6pSwrVXeBuUs5yEIq31A7wsxb6-Yyj5YI7ZeW2CGONT1R750riH2cYNJvcoD3n6FoozY_7tf3gtM46bJvSh09oQ8HtJHOi3HfkoehPSMPJwNf5A_J5vTdI0IGukHhcyODqifN3S-xh7YDV1GemH8Ap8ir47p1PvcBrul3g5WWWW6cAt-usB4b6hJHlcyPuxiWFskenKZd2YXX1-Q-dnp5cl5PUxXqIGb3bqW0aqOa-uVNhqsVEAiqK02wkIFZSFR0FFGsFDvLPO8Da0UE9sKFoNujOgUf0kO0jKF14Q21rW6YVCrRSe8ZLqzJhoWo4ZyLgpfEbZldO8G6HGcgHHTQwmC0un_IJ2KfN59dFuQN_5O_gUluCNF2Oy8AMrUD8rU_0uZKvIJ5d-jccMBnRneKMA1ESarnyJ0UM6hK3I4ogSjdOPtrQb1g1NY9XwCfAYvypqKfNht45fY6JbC8i7ToDC0khV5VRRudyVIZSHDYqwiaqSKozuPd9LiOkOGNzjeBH70zf_g0lvyCA4iShvkITlY_7wL7yA1W9v32QrvAW9jOrA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtAqWX0nfdpsWFQi81WUuyLfVSNmFDWthQlizkZvRMFoK9zW4O--87I8tOTEuu0siWPA_NyKNvCPlCKz9xXheZpKXKuCtB5xyzGVW5nhgHm5bDC87zs_J0yX9dFBfxwG0T0yp7mxgMtW0NnpEfsoms8NSN5j_WfzKsGoV_V2MJjcdkH0ywAAnfP5qd_V4MpyyIegkxUAc3xCC-P7RdBhtiIOfo3ItQ6O1uSwrI_f_a53sb1Dh58t5udPKcPItuZDrt-P6CPHLNS_JkHn-UvyK7WXOFSBrNZQoeXhrRP6_T5RZzYXdp69OFsiu8krz5nk6tDemwPXVfYGUT6Nwa7HUH571LVWOxJeDErmLbqkmPz0PPfPHzNVmezM6PT7NYZSEzRVlts9JrUTGprZAKPjHj4BBKLRXXEElpcBikLz1oqjWaWla4ouQTXXDqncwVrwR7Q_aatnHvSJprU8icQszmDbcllZVWXlHvJYR1ntuE0P5D1yZCkGMljOsaQhHkTv0f7iTk2zBo3SFwPEx-hBwcSBE-OzS0N5d11MaambJisHwlKsF1oYXVThjNmHNcS-sS8hX5X6OSwwSNincVYJkIl1VPEUIo-NIJORhRgnKacXcvQXU0Dpv6TpQT8nnoxpGY8Na49jbQIDOkKBPythO4YUng0oKnRWlCxEgUR2se9zSrqwAdnmOZE3jo-4fn9YE8hVfwLtHxgOxtb27dR3C-tvpT1LC_-rAyLg priority: 102 providerName: ProQuest |
Title | Enhancing the Clinical Utility of Radiomics: Addressing the Challenges of Repeatability and Reproducibility in CT and MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39202322 https://www.proquest.com/docview/3097900321 https://www.proquest.com/docview/3099793986 https://pubmed.ncbi.nlm.nih.gov/PMC11353986 https://doaj.org/article/3c673c56a8784b5b8dbe8cb33ee4b9de |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6FsZexr7nrQseDPYyb7Es29JgjLSkdIOUERrom5EsqQ0Ep0tSWP773clyqFk39iqdPyTd6X5nn34H8I6VbmidzhPJCpVwW6DN2cwkTKV6WFt0WpYOOE_OitMZ_36RX-xBVxU1TOD6ztCO6knNVouPv35uv6LBf6GIE0P2T6ZNSiNa45TwOoKKe3CArqmkWg6TgPf91iyJco_SGhm6ygShgGiZiP52n5638qT-f27dt3xXP6_ylqM6eQQPA8KMR61KPIY92zyB-5PwD_0pbMfNFZFsNJcxgr84EIMu4tmG0mS38dLFU2XmdFp5_TkeGeMzZTvprvbK2svZa9zKW6bvbawaQy2eQnYe2uZNfHzueybTb89gdjI-Pz5NQgGGpM6LcpMUTosyk9oIqSQaMkesKLVUXGOQpRFLSFc4NGJTa2ay3OYFH-qcM2dlqngpsuew3ywb-xLiVNe5TBmGc67mpmCy1Mop5pzEiM9xEwHrJrqqAzs5FclYVBil0OpUd6xOBB92F1235Bz_Fj-iFdyJErO2b1iuLqtgqFVWF2WGw1eiFFznWhhtRa2zzFqupbERvKf1r0gj8QVrFY4x4DCJSasaEbuQh9kRHPYk0W7rfnenQVWn9lU2xHnGjZalEbzdddOVlAvX2OWNl6HFkKKI4EWrcLshIdpFEMZYBKKnir0x93ua-ZVnFU-pAgre9NV_PPg1PMDn8DYR8hD2N6sb-wbB2UYP4OBofPZjOvAfNwbe_H4DID88-w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBgQJxAvRGtv5MBJC3djUsrVCVSvtLdixvVWa0rJ2Qv2n-Bu5y0e3CLS3vdoXJ87d-e7s8-8A3rPEda3TUSBZrAJhY9Q5y03AVKi7uUWjZemC83AU96fi-0l0sgV_mrswlFbZrInlQm3mOe2R7_KuTGjXjYVfF78CqhpFp6tNCY1KLI7s-jeGbMsvg2_I3w-MHR5M9vtBXVUgyKM4WQWx02nCpTapVDgkF-gASS2V0Bg5aDSQ0sUOJdPkmhke2SgWXR0J5qwMlUhSjuPegW3B0VXowPbewejHeLOrQyibGHNV8Eacy-6uqTLmCHM5pGAiLQvLXZnAslLAv_bgmkFsJ2tes36HD-FB7bb6vUrOHsGWLR7D3WF9MP8E1gfFGSF3FKc-epR-jTZ67k9XlHu79ufOHyszoyvQy89-z5gy_bahbgq6LEs6u0D7UMGHr31VGGopcWlnddus8PcnZc9wPHgK01v5_8-gU8wL-wL8UOeRDBnGiC4XJmYy0cop5pzEMNIJ4wFrfnSW15DnVHnjPMPQh7iT_Yc7HnzaPLSoED9uJt8jDm5ICa67bJhfnGa19mc8jxOO01dpkgod6dRom-aac2uFlsZ68JH4n9Gigh-Yq_puBE6T4LmyHkEWlb67BzstSlwM8nZ3I0FZvRgtsyvV8eDdppuepAS7ws4vSxpihkxjD55XAreZErrQ6Nkx5kHaEsXWnNs9xeyshCoPqawKDvry5u96C_f6k-FxdjwYHb2C-_g6USVZ7kBndXFpX6Pjt9Jvam3z4edtK_hfgPtttw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6FMpexr7nrds82NjLTGxJ_tBgjLRNaNYllNBA31zLktpAcbImZeRf21-3O3-kNRt966t0li3f6T6k0-8APrLY-saq0JMsyjxhIlxzhmuPZYHyc4NGy9AF59E4OpyKH6fh6Rb8ae7CUFploxNLRa3nOe2Rd7kvY9p1Y0HX1mkRxweD74tfHlWQopPWppxGJSJHZv0bw7flt-EB8voTY4P-yf6hV1cY8PIwildeZFUSc6l0IjMcngt0hqSSmVAYRSg0ltJGFqVU54ppHpowEr4KBbNGBpmIE47jPoDtmK6PdmB7rz8-nmx2eAhxE-OvCuqIc-l3dZU9R_jLAQUWSVlk7sYcllUD_rUNt4xjO3HzliUcPIZHtQvr9iqZewJbpngKO6P6kP4ZrPvFBaF4FOcuepdujTx66U5XlIe7dufWnWR6Rtehl1_dntZlKm5D3RR3WZZ0ZoG2ooISX7tZoamlxKid1W2zwt0_KXtGk-FzmN7L_38BnWJemFfgBioPZcAwXrS50BGTscpsxqyVGFJaoR1gzY9O8xr-nKpwXKYYBhF30v9wx4Evm4cWFfrH3eR7xMENKUF3lw3zq_O01gQpz6OY4_SzJE6EClWilUlyxbkxQkltHPhM_E9JweAH5ll9TwKnSVBdaY_gi0o_3oHdFiUqhrzd3UhQWiumZXqzjBz4sOmmJynZrjDz65KGmCGTyIGXlcBtpoTuNHp5jDmQtESxNed2TzG7KGHLAyqxgoO-vvu73sMOLuz053B89AYe4ttElW-5C53V1bV5iz7gSr2rF5sLZ_e9vv8CnxFx9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Clinical+Utility+of+Radiomics%3A+Addressing+the+Challenges+of+Repeatability+and+Reproducibility+in+CT+and+MRI&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Teng%2C+Xinzhi&rft.au=Wang%2C+Yongqiang&rft.au=Nicol%2C+Alexander+James&rft.au=Ching%2C+Jerry+Chi+Fung&rft.date=2024-08-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=16&rft_id=info:doi/10.3390%2Fdiagnostics14161835&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |