DAB2IP modulates primary cilia formation associated with renal tumorigenesis

Primary cilium is a microtubule-based organelle that projects from the surfaces of most mammalian cell types and protrudes into the extracellular milieu as an antenna-like sensor to senses extracellular physical and biochemical signals, and then transmits signals into cytoplasm or nucleus to regulat...

Full description

Saved in:
Bibliographic Details
Published inNeoplasia (New York, N.Y.) Vol. 23; no. 1; pp. 169 - 180
Main Authors Lin, Chun-Jung, Dang, Andrew, Hernandez, Elizabeth, Hsieh, Jer-Tsong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
Neoplasia Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Primary cilium is a microtubule-based organelle that projects from the surfaces of most mammalian cell types and protrudes into the extracellular milieu as an antenna-like sensor to senses extracellular physical and biochemical signals, and then transmits signals into cytoplasm or nucleus to regulate numerous physical and developmental processes. Therefore, loss of primary cilia is associated to multiple cancer progression, including skin, breast, pancreas, ovarian, prostate, and kidney cancers. Our previous studies demonstrate that high prevalent loss of DAB2 Interacting Protein (DAB2IP) is associated with renal cell carcinoma, and we found a kinesin-like protein, kinesin family member 3A (KIF3a), was significantly increased in DAB2IP-interacting protein fraction. KIF3 is one of the most abundant kinesin-2 family proteins expressed in cells, and it is necessary for ciliogenesis. In this study, we observed that loss of DAB2IP in normal kidney epithelial cell significantly impair primary cilia formation. We unveiled a new mechanism of primary cilia stability via DAB2IP and KIF3a physical interaction at DAB2IP-PH domain. Furthermore, we found that KIF3a also act as a tumor suppressor in renal cell carcinoma, affect tumor development and patient survival.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-5586
1522-8002
1476-5586
DOI:10.1016/j.neo.2020.12.002