Interference of B lymphocyte tolerance by prolactin in rheumatic autoimmune diseases

Systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc) are the most common rheumatic autoimmune diseases/disorders (RADs) that affect autologous connective tissues as a result of the breakdown of the self-tolerance mechanisms of the immune system. Prolactin, a gl...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 6; p. e16977
Main Authors Mousavi, Mohammad Javad, Alizadeh, Ardalan, Ghotloo, Somayeh
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc) are the most common rheumatic autoimmune diseases/disorders (RADs) that affect autologous connective tissues as a result of the breakdown of the self-tolerance mechanisms of the immune system. Prolactin, a glycoprotein hormone, has been known for its crucial role in the pathogenesis of these rheumatic autoimmune diseases. In addition to regulating lymphocyte proliferation and antibody synthesis, prolactin is also responsible for regulating cytokine production. Moreover, it contributes to the breakdown of central and peripheral tolerance mechanisms of B lymphocytes. Given the crucial role of prolactin in the pathogenesis of the mentioned RADs, prolactin may contribute to their pathogenesis by the breakdown of tolerance. In the present study, the key role of prolactin to the breakdown of B lymphocyte tolerance and its possible implication for the pathogenesis of these diseases is discussed. Current literature supports prolactin's role in the breakdown of B lymphocyte central and peripheral tolerance mechanisms, such apoptosis, receptor editing, and also anergy. Therefore, prolactin may contribute to the pathogenesis of RADs by the breakdown of B lymphocyte tolerance. However, more investigations, particularly in RA and SSc animal models, are required to precisely address the pathologic role of prolactin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e16977