ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
Head motion during functional MRI (fMRI) scanning can induce spurious findings and/or harm detection of true effects. Solutions have been proposed, including deleting ('scrubbing') or regressing out ('spike regression') motion volumes from fMRI time-series. These strategies remov...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 112; pp. 267 - 277 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
15.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Head motion during functional MRI (fMRI) scanning can induce spurious findings and/or harm detection of true effects. Solutions have been proposed, including deleting ('scrubbing') or regressing out ('spike regression') motion volumes from fMRI time-series. These strategies remove motion-induced signal variations at the cost of destroying the autocorrelation structure of the fMRI time-series and reducing temporal degrees of freedom. ICA-based fMRI denoising strategies overcome these drawbacks but typically require re-training of a classifier, needing manual labeling of derived components (e.g. ICA-FIX; Salimi-Khorshidi et al. (2014)). Here, we propose an ICA-based strategy for Automatic Removal of Motion Artifacts (ICA-AROMA) that uses a small (n=4), but robust set of theoretically motivated temporal and spatial features. Our strategy does not require classifier re-training, retains the data's autocorrelation structure and largely preserves temporal degrees of freedom. We describe ICA-AROMA, its implementation, and initial validation. ICA-AROMA identified motion components with high accuracy and robustness as illustrated by leave-N-out cross-validation. We additionally validated ICA-AROMA in resting-state (100 participants) and task-based fMRI data (118 participants). Our approach removed (motion-related) spurious noise from both rfMRI and task-based fMRI data to larger extent than regression using 24 motion parameters or spike regression. Furthermore, ICA-AROMA increased sensitivity to group-level activation. Our results show that ICA-AROMA effectively reduces motion-induced signal variations in fMRI data, is applicable across datasets without requiring classifier re-training, and preserves the temporal characteristics of the fMRI data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2015.02.064 |